Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(4): e1011348, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37071654

RESUMO

Since the latter part of 2020, SARS-CoV-2 evolution has been characterised by the emergence of viral variants associated with distinct biological characteristics. While the main research focus has centred on the ability of new variants to increase in frequency and impact the effective reproductive number of the virus, less attention has been placed on their relative ability to establish transmission chains and to spread through a geographic area. Here, we describe a phylogeographic approach to estimate and compare the introduction and dispersal dynamics of the main SARS-CoV-2 variants - Alpha, Iota, Delta, and Omicron - that circulated in the New York City area between 2020 and 2022. Notably, our results indicate that Delta had a lower ability to establish sustained transmission chains in the NYC area and that Omicron (BA.1) was the variant fastest to disseminate across the study area. The analytical approach presented here complements non-spatially-explicit analytical approaches that seek a better understanding of the epidemiological differences that exist among successive SARS-CoV-2 variants of concern.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/virologia , Cidade de Nova Iorque/epidemiologia , SARS-CoV-2/genética
2.
J Infect Dis ; 229(3): 763-774, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38035854

RESUMO

BACKGROUND: Chronic inflammation persists in some people living with human immunodeficiency virus (HIV) during antiretroviral therapy and is associated with premature aging. The glycoprotein 120 (gp120) subunit of HIV-1 envelope sheds and can be detected in plasma, showing immunomodulatory properties even in the absence of detectable viremia. We evaluated whether plasma soluble gp120 (sgp120) and a family of gp120-specific anti-cluster A antibodies, linked to CD4 depletion in vitro, contribute to chronic inflammation, immune dysfunction, and subclinical cardiovascular disease in participants of the Canadian HIV and Aging Cohort Study with undetectable viremia. METHODS: Cross-sectional assessment of sgp120 and anti-cluster A antibodies was performed in 386 individuals from the cohort. Their association with proinflammatory cytokines and subclinical coronary artery disease was assessed using linear regression models. RESULTS: High levels of sgp120 and anti-cluster A antibodies were inversely correlated with CD4+ T cell count and CD4/CD8 ratio. The presence of sgp120 was associated with increased levels of interleukin 6. In participants with detectable atherosclerotic plaque and detectable sgp120, anti-cluster A antibodies and their combination with sgp120 levels correlated positively with the total volume of atherosclerotic plaques. CONCLUSIONS: This study showed that sgp120 may act as a pan toxin causing immune dysfunction and sustained inflammation in a subset of people living with HIV, contributing to the development of premature comorbid conditions.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Viremia , Estudos de Coortes , Estudos Transversais , Canadá , Infecções por HIV/tratamento farmacológico , Anticorpos Anti-HIV , Glicoproteínas , Proteína gp120 do Envelope de HIV
3.
Clin Infect Dis ; 76(2): 342-345, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36156117

RESUMO

New mutations conferring resistance to SARS-CoV-2 therapeutics have important clinical implications. We describe the first cases of an independently acquired V792I RNA-dependent RNA polymerase mutation developing in renal transplant recipients after remdesivir exposure. Our work underscores the need for augmented efforts to identify concerning mutations and address their clinical implications.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Antivirais/uso terapêutico , Transplantados , Tratamento Farmacológico da COVID-19
4.
J Virol ; 96(6): e0192921, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35080425

RESUMO

The HIV-1 Nef and Vpu accessory proteins are known to protect infected cells from antibody-dependent cellular cytotoxicity (ADCC) responses by limiting exposure of CD4-induced (CD4i) envelope (Env) epitopes at the cell surface. Although both proteins target the host receptor CD4 for degradation, the extent of their functional redundancy is unknown. Here, we developed an intracellular staining technique that permits the intracellular detection of both Nef and Vpu in primary CD4+ T cells by flow cytometry. Using this method, we show that the combined expression of Nef and Vpu predicts the susceptibility of HIV-1-infected primary CD4+ T cells to ADCC by HIV+ plasma. We also show that Vpu cannot compensate for the absence of Nef, thus providing an explanation for why some infectious molecular clones that carry a LucR reporter gene upstream of Nef render infected cells more susceptible to ADCC responses. Our method thus represents a new tool to dissect the biological activity of Nef and Vpu in the context of other host and viral proteins within single infected CD4+ T cells. IMPORTANCE HIV-1 Nef and Vpu exert several biological functions that are important for viral immune evasion, release, and replication. Here, we developed a new method allowing simultaneous detection of these accessory proteins in their native form together with some of their cellular substrates. This allowed us to show that Vpu cannot compensate for the lack of a functional Nef, which has implications for studies that use Nef-defective viruses to study ADCC responses.


Assuntos
Linfócitos T CD4-Positivos , Infecções por HIV , HIV-1 , Proteínas do Vírus da Imunodeficiência Humana , Proteínas Virais Reguladoras e Acessórias , Proteínas Viroporinas , Produtos do Gene nef do Vírus da Imunodeficiência Humana , Citotoxicidade Celular Dependente de Anticorpos/fisiologia , Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos/virologia , Citometria de Fluxo , Infecções por HIV/fisiopatologia , HIV-1/genética , HIV-1/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/genética , Proteínas do Vírus da Imunodeficiência Humana/isolamento & purificação , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/isolamento & purificação , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Viroporinas/genética , Proteínas Viroporinas/isolamento & purificação , Proteínas Viroporinas/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/isolamento & purificação , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo
5.
PLoS Pathog ; 17(5): e1009571, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34015049

RESUMO

During the first phase of the COVID-19 epidemic, New York City rapidly became the epicenter of the pandemic in the United States. While molecular phylogenetic analyses have previously highlighted multiple introductions and a period of cryptic community transmission within New York City, little is known about the circulation of SARS-CoV-2 within and among its boroughs. We here perform phylogeographic investigations to gain insights into the circulation of viral lineages during the first months of the New York City outbreak. Our analyses describe the dispersal dynamics of viral lineages at the state and city levels, illustrating that peripheral samples likely correspond to distinct dispersal events originating from the main metropolitan city areas. In line with the high prevalence recorded in this area, our results highlight the relatively important role of the borough of Queens as a transmission hub associated with higher local circulation and dispersal of viral lineages toward the surrounding boroughs.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , SARS-CoV-2/genética , Genoma Viral/genética , Humanos , Cidade de Nova Iorque/epidemiologia , Filogenia , Filogeografia , Prevalência , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação
6.
J Immunol ; 206(6): 1266-1283, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33536254

RESUMO

The role of vaccine-induced anti-V2 Abs was tested in three protection experiments in rhesus macaques. In an experiment using immunogens similar to those in the RV144 vaccine trial (Anti-envelope [Env]), nine rhesus macaques were coimmunized with gp16092TH023 DNA and SIV gag and gp120A244 and gp120MN proteins. In two V2-focused experiments (Anti-V2 and Anti-V2 Mucosal), nine macaques in each group were immunized with V1V292TH023 DNA, V1V2A244 and V1V2CasaeA2 proteins, and cyclic V2CaseA2 peptide. DNA and protein immunogens, formulated in Adjuplex, were given at 0, 4, 12, and 20 weeks, followed by intrarectal SHIVBaL.P4 challenges. Peak plasma viral loads (PVL) of 106-107 copies/ml developed in all nine sham controls. Overall, PVL was undetectable in one third of immunized macaques, and two animals tightly controlled the virus with the Anti-V2 Mucosal vaccine strategy. In the Anti-Env study, Abs that captured or neutralized SHIVBaL.P4 inversely correlated with PVL. Conversely, no correlation with PVL was found in the Anti-V2 experiments with nonneutralizing plasma Abs that only captured virus weakly. Titers of Abs against eight V1V2 scaffolds and cyclic V2 peptides were comparable between controllers and noncontrollers as were Ab-dependent cellular cytotoxicity and Ab-dependent cell-mediated virus inhibition activities against SHIV-infected target cells and phagocytosis of gp120-coated beads. The Anti-Env experiment supports the role of vaccine-elicited neutralizing and nonneutralizing Abs in control of PVL. However, the two V2-focused experiments did not support a role for nonneutralizing V2 Abs alone in controlling PVL, as neither Ab-dependent cellular cytotoxicity, Ab-dependent cell-mediated virus inhibition, nor phagocytosis correlated inversely with heterologous SHIVBaL.P4 infection.


Assuntos
Vacinas contra a AIDS/imunologia , Infecções por HIV/prevenção & controle , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Vacinas contra a AIDS/administração & dosagem , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Modelos Animais de Doenças , Feminino , Produtos do Gene env/imunologia , Infecções por HIV/sangue , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Imunogenicidade da Vacina , Macaca mulatta , Masculino , Fagocitose/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Carga Viral
7.
Emerg Infect Dis ; 28(4): 881-883, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35130474

RESUMO

Of 379 severe acute respiratory syndrome coronavirus 2 samples collected in New York, USA, we detected 86 Omicron variant sequences containing Delta variant mutation P681R. Probable explanations were co-infection with 2 viruses or contamination/amplification artifact. Repeated library preparation with fewer cycles showed the P681R calls were artifactual. Unusual mutations should be interpreted with caution.


Assuntos
COVID-19 , SARS-CoV-2 , Artefatos , Humanos , Mutação , New York/epidemiologia , SARS-CoV-2/genética
8.
Transfusion ; 62(9): 1779-1790, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35919021

RESUMO

BACKGROUND: Plateletpheresis involves platelet separation and collection from whole blood while other blood cells are returned to the donor. Because platelets are replaced faster than red blood cells, as many as 24 donations can be done annually. However, some frequent apheresis platelet donors (>20 donations annually) display severe plateletpheresis-associated lymphopenia; in particular, CD4+ T but not B cell numbers are decreased. COVID-19 vaccination thereby provides a model to assess whether lymphopenic platelet donors present compromised humoral immune responses. STUDY DESIGN AND METHODS: We assessed vaccine responses following 2 doses of COVID-19 vaccination in a cohort of 43 plateletpheresis donors with a range of pre-vaccination CD4+ T cell counts (76-1537 cells/µl). In addition to baseline T cell measurements, antibody binding assays to full-length Spike and the Receptor Binding Domain (RBD) were performed pre- and post-vaccination. Furthermore, pseudo-particle neutralization and antibody-dependent cellular cytotoxicity assays were conducted to measure antibody functionality. RESULTS: Participants were stratified into two groups: <400 CD4/µl (n = 27) and ≥ 400 CD4/µl (n = 16). Following the first dose, 79% seroconverted within the <400 CD4/µl group compared to 87% in the ≥400 CD4/µl group; all donors were seropositive post-second dose with significant increases in antibody levels. Importantly differences in CD4+ T cell levels minimally impacted neutralization, Spike recognition, and IgG Fc-mediated effector functions. DISCUSSION: Overall, our results indicate that lymphopenic plateletpheresis donors do not exhibit significant immune dysfunction; they have retained the T and B cell functionality necessary for potent antibody responses after vaccination.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Linfopenia , Doadores de Sangue , COVID-19/prevenção & controle , COVID-19/terapia , Vacinas contra COVID-19/efeitos adversos , Humanos , Linfopenia/etiologia , Contagem de Plaquetas , Plaquetoferese/métodos
10.
Clin Infect Dis ; 76(6): 1155-1156, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36346103
11.
J Clin Microbiol ; 55(9): 2785-2800, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28659324

RESUMO

The global intensification of antiretroviral therapy (ART) can lead to increased rates of HIV drug resistance (HIVDR) mutations in treated and also in ART-naive patients. ART-naive HIV-1-infected patients from Cameroon were subjected to a multimethod HIVDR analysis using amplification-refractory mutation system (ARMS)-PCR, Sanger sequencing, and longitudinal next-generation sequencing (NGS) to determine their profiles for the mutations K103N, Y181C, K65R, M184V, and T215F/Y. We processed 66 ART-naive HIV-1-positive patients with highly diverse subtypes that underlined the predominance of CRF02_AG and the increasing rate of F2 and other recombinant forms in Cameroon. We compared three resistance testing methods for 5 major mutation sites. Using Sanger sequencing, the overall prevalence of HIVDR mutations was 7.6% (5/66) and included all studied mutations except K65R. Comparing ARMS-PCR with Sanger sequencing as a reference, we obtained a sensitivity of 100% (5/5) and a specificity of 95% (58/61), caused by three false-positive calls with ARMS-PCR. For 32/66 samples, we obtained NGS data and we observed two additional mismatches made up of minority variants (7% and 18%) that might not be clinically relevant. Longitudinal NGS analyses revealed changes in HIVDR mutations in all five positive subjects that could not be attributed to treatment. In one of these cases, superinfection led to the temporary masking of a resistant virus. HIVDR mutations can be sensitively detected by ARMS-PCR and sequencing methods with comparable performances. Longitudinal changes in HIVDR mutations have to be considered even in the absence of treatment.


Assuntos
Farmacorresistência Viral/genética , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , HIV-1/genética , Adulto , Fármacos Anti-HIV/uso terapêutico , Sequência de Bases , Camarões , Feminino , Infecções por HIV/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mutação/genética , Reação em Cadeia da Polimerase/métodos , Inibidores da Transcriptase Reversa/uso terapêutico , Análise de Sequência de RNA
12.
Virus Evol ; 10(1): veae035, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774310

RESUMO

The recombinant SARS-CoV-2 Omicron XBB.1.5 variant was first detected in New York City (NYC) and rapidly became the predominant variant in the area by early 2023. The increased occurrence of circulating variants within the SARS-CoV-2 XBB-sublineage prompted the modification of COVID-19 mRNA vaccines by Moderna and Pfizer-BioNTech. This update, implemented in mid-September 2023, involved the incorporation of a monovalent XBB.1.5 component. Considering that NYC probably played a central role in the emergence of the XBB.1.5 variant, we conducted phylogeographic analysis to investigate the emergence and spread of this variant in the metropolitan area. Our analysis confirms that XBB.1.5 emerged within or near the NYC area and indicates that XBB.1.5 had a diffusion velocity similar to that of the variant Alpha in the same study area. Additionally, the analysis of 2,392 genomes collected in the context of the genomic surveillance program at NYU Langone Health system showed that there was no increased proportion of XBB.1.5, relative to all cocirculating variants, in the boosted compared to unvaccinated individuals. This study provides a comprehensive description of the emergence and dissemination of XBB.1.5.

13.
Artigo em Inglês | MEDLINE | ID: mdl-37391605

RESUMO

COVID-19 vaccines were developed at unparalleled speed, but racial disparities persist in vaccine uptake. This is a cross-sectional survey that was conducted in mid-2021 in ambulatory clinics across Brooklyn, New York. The objectives of the study were to assess: knowledge of COVID-19, healthcare communication and access, attitudes including trust in the process of vaccine development and mistrust due to racial discrimination, and to determine the relationship of the above to vaccine receipt. 58 respondents self-identified as Black non-Hispanic and completed the survey: the majority were women (79%), <50 years old (65%), employed (66%), and had annual household income <$75,000 (59%). The majority reported having some health insurance (97%) and a regular place of healthcare (95%). 60% of respondents reported COVID-19 vaccination receipt. A significant percentage of the vaccinated group compared to the unvaccinated group scored higher on knowledge questions (91% vs. 65%; p = 0.018), felt it was important that others in the community get vaccinated (89% vs. 65%, p = 0.04), and trusted vaccine safety (86% vs. 35%; p < 0.0001) and effectiveness (88% vs. 48%; p < 0.001). The unvaccinated group reported a lower annual household income of <$75,000 (72% vs. 50%; p = 0.0002) and also differed by employment status (p = 0.04). Majority in both groups agreed that racial discrimination interferes with healthcare (78%). In summary, unvaccinated Black non-Hispanic respondents report significant concerns about vaccine safety and efficacy and have greater mistrust in the vaccine development process. The relationship between racial discrimination, mistrust, and vaccine hesitancy needs further study in order to improve vaccine uptake in this population.

14.
Nat Protoc ; 18(12): 3821-3855, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37833423

RESUMO

One of the main challenges in the fight against coronavirus disease 2019 (COVID-19) stems from the ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into multiple variants. To address this hurdle, research groups around the world have independently developed protocols to isolate these variants from clinical samples. These isolates are then used in translational and basic research-for example, in vaccine development, drug screening or characterizing SARS-CoV-2 biology and pathogenesis. However, over the course of the COVID-19 pandemic, we have learned that the introduction of artefacts during both in vitro isolation and subsequent propagation to virus stocks can lessen the validity and reproducibility of data. We propose a rigorous pipeline for the generation of high-quality SARS-CoV-2 variant clonal isolates that minimizes the acquisition of mutations and introduces stringent controls to detect them. Overall, the process includes eight stages: (i) cell maintenance, (ii) isolation of SARS-CoV-2 from clinical specimens, (iii) determination of infectious virus titers by plaque assay, (iv) clonal isolation by plaque purification, (v) whole-virus-genome deep-sequencing, (vi and vii) amplification of selected virus clones to master and working stocks and (viii) sucrose purification. This comprehensive protocol will enable researchers to generate reliable SARS-CoV-2 variant inoculates for in vitro and in vivo experimentation and will facilitate comparisons and collaborative work. Quality-controlled working stocks for most applications can be generated from acquired biorepository virus within 1 month. An additional 5-8 d are required when virus is isolated from clinical swab material, and another 6-7 d is needed for sucrose-purifying the stocks.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias/prevenção & controle , Reprodutibilidade dos Testes , Sacarose
15.
EBioMedicine ; 97: 104843, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37866115

RESUMO

BACKGROUND: High rates of vaccination and natural infection drive immunity and redirect selective viral adaptation. Updated boosters are installed to cope with drifted viruses, yet data on adaptive evolution under increasing immune pressure in a real-world situation are lacking. METHODS: Cross-sectional study to characterise SARS-CoV-2 mutational dynamics and selective adaptation over >1 year in relation to vaccine status, viral phylogenetics, and associated clinical and demographic variables. FINDINGS: The study of >5400 SARS-CoV-2 infections between July 2021 and August 2022 in metropolitan New York portrayed the evolutionary transition from Delta to Omicron BA.1-BA.5 variants. Booster vaccinations were implemented during the Delta wave, yet booster breakthrough infections and SARS-CoV-2 re-infections were almost exclusive to Omicron. In adjusted logistic regression analyses, BA.1, BA.2, and BA.5 had a significant growth advantage over co-occurring lineages in the boosted population, unlike BA.2.12.1 or BA.4. Selection pressure by booster shots translated into diffuse adaptive evolution in Delta spike, contrasting with strong, receptor-binding motif-focused adaptive evolution in BA.2-BA.5 spike (Fisher Exact tests; non-synonymous/synonymous mutation rates per site). Convergent evolution has become common in Omicron, engaging spike positions crucial for immune escape, receptor binding, or cleavage. INTERPRETATION: Booster shots are required to cope with gaps in immunity. Their discriminative immune pressure contributes to their effectiveness but also requires monitoring of selective viral adaptation processes. Omicron BA.2 and BA.5 had a selective advantage under booster vaccination pressure, contributing to the evolution of BA.2 and BA.5 sublineages and recombinant forms that predominate in 2023. FUNDING: The study was supported by NYU institutional funds and partly by the Cancer Center Support Grant P30CA016087 at the Laura and Isaac Perlmutter Cancer Center.


Assuntos
COVID-19 , Vacinas , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estudos Transversais , Infecções Irruptivas , Anticorpos Antivirais , Anticorpos Neutralizantes
16.
Cell Rep ; 42(1): 111983, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640355

RESUMO

HIV-1 envelope (Env) conformation determines the susceptibility of infected CD4+ T cells to antibody-dependent cellular cytotoxicity (ADCC). Upon interaction with CD4, Env adopts more "open" conformations, exposing ADCC epitopes. HIV-1 limits Env-CD4 interaction and protects infected cells against ADCC by downregulating CD4 via Nef, Vpu, and Env. Limited data exist, however, of the role of these proteins in downmodulating CD4 on infected macrophages and how this impacts Env conformation. While Nef, Vpu, and Env are all required to efficiently downregulate CD4 on infected CD4+ T cells, we show here that any one of these proteins is sufficient to downmodulate most CD4 from the surface of infected macrophages. Consistent with this finding, Nef and Vpu have a lesser impact on Env conformation and ADCC sensitivity in infected macrophages compared with CD4+ T cells. However, treatment of infected macrophages with small CD4 mimetics exposes vulnerable CD4-induced Env epitopes and sensitizes them to ADCC.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Infecções por HIV/metabolismo , Linfócitos T CD4-Positivos , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Anticorpos Anti-HIV/metabolismo , Epitopos/metabolismo , Citotoxicidade Celular Dependente de Anticorpos
17.
iScience ; 26(2): 106075, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36844451

RESUMO

The emergence of recombinant viruses is a threat to public health, as recombination may integrate variant-specific features that together result in escape from treatment or immunity. The selective advantages of recombinant SARS-CoV-2 isolates over their parental lineages remain unknown. We identified a Delta-Omicron (AY.45-BA.1) recombinant in an immunosuppressed transplant recipient treated with monoclonal antibody Sotrovimab. The single recombination breakpoint is located in the spike N-terminal domain adjacent to the Sotrovimab binding site. While Delta and BA.1 are sensitive to Sotrovimab neutralization, the Delta-Omicron recombinant is highly resistant. To our knowledge, this is the first described instance of recombination between circulating SARS-CoV-2 variants as a functional mechanism of resistance to treatment and immune escape.

18.
medRxiv ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37645879

RESUMO

Background: Chronic inflammation persists in some people living with HIV (PLWH), even during antiretroviral therapy (ART) and is associated with premature aging. The gp120 subunit of the HIV-1 envelope glycoprotein can shed from viral and cellular membranes and can be detected in plasma and tissues, showing immunomodulatory properties even in the absence of detectable viremia. We evaluated whether plasmatic soluble gp120 (sgp120) and a family of gp120-specific anti-cluster A antibodies, which were previously linked to CD4 depletion in vitro , could contribute to chronic inflammation, immune dysfunction, and sub-clinical cardiovascular disease in participants of the Canadian HIV and Aging cohort (CHACS) with undetectable viremia. Methods: Cross-sectional assessment of plasmatic sgp120 and anti-cluster A antibodies was performed in 386 individuals from CHACS. Their association with pro-inflammatory cytokines, as well as subclinical coronary artery disease measured by computed tomography coronary angiography was assessed using linear regression models. Results: In individuals with high levels of sgp120, anti-cluster A antibodies inversely correlated with CD4 count (p=0.042) and CD4:CD8 ratio (p=0.004). The presence of sgp120 was associated with increased plasma levels of IL-6. In participants with detectable atherosclerotic plaque and detectable sgp120, sgp120 levels, anti-cluster A antibodies and their combination correlated positively with the total volume of atherosclerotic plaques (p=0.01, 0.018 and 0.006, respectively). Conclusion: Soluble gp120 may act as a pan toxin causing immune dysfunction and sustained inflammation in a subset of PLWH, contributing to the development of premature comorbidities. Whether drugs targeting sgp120 could mitigate HIV-associated comorbidities in PLWH with suppressed viremia warrants further studies. Key points: Soluble gp120 is detected in the plasma of people living with HIV-1 with undetectable viremia. The presence of soluble gp120 and anti-cluster A antibodies is associated with immune dysfunction, chronic inflammation, and sub-clinical cardiovascular disease.

19.
bioRxiv ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36238716

RESUMO

Small animal models have been a challenge for the study of SARS-CoV-2 transmission, with most investigators using golden hamsters or ferrets 1, 2 . Mice have the advantages of low cost, wide availability, less regulatory and husbandry challenges, and the existence of a versatile reagent and genetic toolbox. However, adult mice do not robustly transmit SARS-CoV-2 3 . Here we establish a model based on neonatal mice that allows for transmission of clinical SARS-CoV-2 isolates. We characterize tropism, respiratory tract replication and transmission of ancestral WA-1 compared to variants Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Omicron BA.1 and Omicron BQ.1.1. We identify inter-variant differences in timing and magnitude of infectious particle shedding from index mice, both of which shape transmission to contact mice. Furthermore, we characterize two recombinant SARS-CoV-2 lacking either the ORF6 or ORF8 host antagonists. The removal of ORF8 shifts viral replication towards the lower respiratory tract, resulting in significantly delayed and reduced transmission in our model. Our results demonstrate the potential of our neonatal mouse model to characterize viral and host determinants of SARS-CoV-2 transmission, while revealing for the first time a role for an accessory protein in this context.

20.
Nat Commun ; 14(1): 3026, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37230979

RESUMO

Small animal models have been a challenge for the study of SARS-CoV-2 transmission, with most investigators using golden hamsters or ferrets. Mice have the advantages of low cost, wide availability, less regulatory and husbandry challenges, and the existence of a versatile reagent and genetic toolbox. However, adult mice do not robustly transmit SARS-CoV-2. Here we establish a model based on neonatal mice that allows for transmission of clinical SARS-CoV-2 isolates. We characterize tropism, respiratory tract replication and transmission of ancestral WA-1 compared to variants Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Omicron BA.1 and Omicron BQ.1.1. We identify inter-variant differences in timing and magnitude of infectious particle shedding from index mice, both of which shape transmission to contact mice. Furthermore, we characterize two recombinant SARS-CoV-2 lacking either the ORF6 or ORF8 host antagonists. The removal of ORF8 shifts viral replication towards the lower respiratory tract, resulting in significantly delayed and reduced transmission in our model. Our results demonstrate the potential of our neonatal mouse model to characterize viral and host determinants of SARS-CoV-2 transmission, while revealing a role for an accessory protein in this context.


Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Animais , Humanos , Camundongos , SARS-CoV-2/genética , Animais Recém-Nascidos , Furões , Modelos Animais de Doenças , Mesocricetus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA