Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Immunity ; 53(4): 824-839.e10, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053331

RESUMO

CD8+ T cells within the tumor microenvironment (TME) are exposed to various signals that ultimately determine functional outcomes. Here, we examined the role of the co-activating receptor CD226 (DNAM-1) in CD8+ T cell function. The absence of CD226 expression identified a subset of dysfunctional CD8+ T cells present in peripheral blood of healthy individuals. These cells exhibited reduced LFA-1 activation, altered TCR signaling, and a distinct transcriptomic program upon stimulation. CD226neg CD8+ T cells accumulated in human and mouse tumors of diverse origin through an antigen-specific mechanism involving the transcriptional regulator Eomesodermin (Eomes). Despite similar expression of co-inhibitory receptors, CD8+ tumor-infiltrating lymphocyte failed to respond to anti-PD-1 in the absence of CD226. Immune checkpoint blockade efficacy was hampered in Cd226-/- mice. Anti-CD137 (4-1BB) agonists also stimulated Eomes-dependent CD226 loss that limited the anti-tumor efficacy of this treatment. Thus, CD226 loss restrains CD8+ T cell function and limits the efficacy of cancer immunotherapy.


Assuntos
Antígenos de Diferenciação de Linfócitos T/imunologia , Linfócitos T CD8-Positivos/imunologia , Neoplasias/imunologia , Proteínas com Domínio T/imunologia , Animais , Humanos , Inibidores de Checkpoint Imunológico/imunologia , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Receptor de Morte Celular Programada 1/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Transcriptoma/imunologia , Microambiente Tumoral/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
2.
Nat Immunol ; 17(12): 1352-1360, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27776107

RESUMO

RASGRP1 is an important guanine nucleotide exchange factor and activator of the RAS-MAPK pathway following T cell antigen receptor (TCR) signaling. The consequences of RASGRP1 mutations in humans are unknown. In a patient with recurrent bacterial and viral infections, born to healthy consanguineous parents, we used homozygosity mapping and exome sequencing to identify a biallelic stop-gain variant in RASGRP1. This variant segregated perfectly with the disease and has not been reported in genetic databases. RASGRP1 deficiency was associated in T cells and B cells with decreased phosphorylation of the extracellular-signal-regulated serine kinase ERK, which was restored following expression of wild-type RASGRP1. RASGRP1 deficiency also resulted in defective proliferation, activation and motility of T cells and B cells. RASGRP1-deficient natural killer (NK) cells exhibited impaired cytotoxicity with defective granule convergence and actin accumulation. Interaction proteomics identified the dynein light chain DYNLL1 as interacting with RASGRP1, which links RASGRP1 to cytoskeletal dynamics. RASGRP1-deficient cells showed decreased activation of the GTPase RhoA. Treatment with lenalidomide increased RhoA activity and reversed the migration and activation defects of RASGRP1-deficient lymphocytes.


Assuntos
Actinas/metabolismo , Linfócitos B/imunologia , Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Síndromes de Imunodeficiência/genética , Células Matadoras Naturais/imunologia , Linfócitos T/imunologia , Adolescente , Inibidores da Angiogênese/farmacologia , Linfócitos B/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/genética , Criança , Citotoxicidade Imunológica/genética , Análise Mutacional de DNA , Dineínas/metabolismo , Feminino , Células HEK293 , Humanos , Switching de Imunoglobulina/genética , Síndromes de Imunodeficiência/tratamento farmacológico , Células Jurkat , Células Matadoras Naturais/efeitos dos fármacos , Lenalidomida , Masculino , Mutação/genética , Linhagem , RNA Interferente Pequeno/genética , Linfócitos T/efeitos dos fármacos , Talidomida/análogos & derivados , Talidomida/farmacologia
3.
Blood ; 142(9): 827-845, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37249233

RESUMO

The nuclear factor of activated T cells (NFAT) family of transcription factors plays central roles in adaptive immunity in murine models; however, their contribution to human immune homeostasis remains poorly defined. In a multigenerational pedigree, we identified 3 patients who carry germ line biallelic missense variants in NFATC1, presenting with recurrent infections, hypogammaglobulinemia, and decreased antibody responses. The compound heterozygous NFATC1 variants identified in these patients caused decreased stability and reduced the binding of DNA and interacting proteins. We observed defects in early activation and proliferation of T and B cells from these patients, amenable to rescue upon genetic reconstitution. Stimulation induced early T-cell activation and proliferation responses were delayed but not lost, reaching that of healthy controls at day 7, indicative of an adaptive capacity of the cells. Assessment of the metabolic capacity of patient T cells revealed that NFATc1 dysfunction rendered T cells unable to engage in glycolysis after stimulation, although oxidative metabolic processes were intact. We hypothesized that NFATc1-mutant T cells could compensate for the energy deficit due to defective glycolysis by using enhanced lipid metabolism as an adaptation, leading to a delayed, but not lost, activation responses. Indeed, we observed increased 13C-labeled palmitate incorporation into citrate, indicating higher fatty acid oxidation, and we demonstrated that metformin and rosiglitazone improved patient T-cell effector functions. Collectively, enabled by our molecular dissection of the consequences of loss-of-function NFATC1 mutations and extending the role of NFATc1 in human immunity beyond receptor signaling, we provide evidence of metabolic plasticity in the context of impaired glycolysis observed in patient T cells, alleviating delayed effector responses.


Assuntos
Fatores de Transcrição NFATC , Linfócitos T , Humanos , Camundongos , Animais , Linfócitos T/metabolismo , Fatores de Transcrição NFATC/metabolismo , Linfócitos T CD8-Positivos , Glicólise/genética , Mutação
4.
Haematologica ; 109(3): 809-823, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37381758

RESUMO

The Bruton tyrosine kinase (BTK) inhibitor ibrutinib is widely used for treatment of patients with relapsed/refractory or treatment-naïve chronic lymphocytic leukemia (CLL). A prominent effect of ibrutinib is to disrupt the retention of CLL cells from supportive lymphoid tissues, by altering BTK-dependent adhesion and migration. To further explore the mechanism of action of ibrutinib and its potential impact on non-leukemic cells, we quantified multiple motility and adhesion parameters of human primary CLL cells and non-leukemic lymphoid cells. In vitro, ibrutinib affected CCL19-, CXCL12- and CXCL13-evoked migration behavior of CLL cells and non-neoplastic lymphocytes, by reducing both motility speed and directionality. De-phosphorylation of BTK induced by ibrutinib in CLL cells was associated with defective polarization over fibronectin and inability to assemble the immunological synapse upon B-cell receptor engagement. In patients' samples collected during a 6-month monitoring of therapy, chemokine-evoked migration was repressed in CLL cells and marginally reduced in T cells. This was accompanied by profound modulation of the expression of chemokine receptors and adhesion molecules. Remarkably, the relative expression of the receptors governing lymph node entry (CCR7) versus exit (S1PR1) stood out as a reliable predictive marker of the clinically relevant treatment-induced lymphocytosis. Together, our data reveal a multifaceted modulation of motility and adhesive properties of ibrutinib on both CLL leukemic cell and T-cell populations and point to intrinsic differences in CLL recirculation properties as an underlying cause for variability in treatment response.


Assuntos
Adenina/análogos & derivados , Leucemia Linfocítica Crônica de Células B , Piperidinas , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Movimento Celular , Tecido Linfoide , Linfócitos
5.
J Immunol ; 208(3): 562-570, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35031578

RESUMO

Aging is associated with functional deficits in the naive T cell compartment, which compromise the generation of de novo immune responses against previously unencountered Ags. The mechanisms that underlie this phenomenon have nonetheless remained unclear. We found that naive CD8+ T cells in elderly humans were prone to apoptosis and proliferated suboptimally in response to stimulation via the TCR. These abnormalities were associated with dysregulated lipid metabolism under homeostatic conditions and enhanced levels of basal activation. Importantly, reversal of the bioenergetic anomalies with lipid-altering drugs, such as rosiglitazone, almost completely restored the Ag responsiveness of naive CD8+ T cells. Interventions that favor lipid catabolism may therefore find utility as adjunctive therapies in the elderly to promote vaccine-induced immunity against targetable cancers and emerging pathogens, such as seasonal influenza viruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).


Assuntos
Envelhecimento/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunocompetência/efeitos dos fármacos , Metabolismo dos Lipídeos , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose , Linfócitos T CD8-Positivos/metabolismo , COVID-19/imunologia , Vacinas Anticâncer/imunologia , Divisão Celular , Feminino , Fenofibrato/farmacologia , Glucose/metabolismo , Antígeno HLA-A2/imunologia , Humanos , Hipolipemiantes/farmacologia , Hipolipemiantes/uso terapêutico , Influenza Humana/imunologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Ativação Linfocitária , Antígeno MART-1/química , Antígeno MART-1/imunologia , Masculino , Pessoa de Meia-Idade , Neoplasias/imunologia , Fragmentos de Peptídeos/imunologia , Rosiglitazona/farmacologia , Método Simples-Cego , Vacinação , Vacinas Virais/imunologia , Adulto Jovem
6.
Bioinformatics ; 38(6): 1692-1699, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34935929

RESUMO

MOTIVATION: High-content imaging screens provide a cost-effective and scalable way to assess cell states across diverse experimental conditions. The analysis of the acquired microscopy images involves assembling and curating raw cellular measurements into morphological profiles suitable for testing biological hypotheses. Despite being a critical step, general-purpose and adaptable tools for morphological profiling are lacking and no solution is available for the high-performance Julia programming language. RESULTS: Here, we introduce BioProfiling.jl, an efficient end-to-end solution for compiling and filtering informative morphological profiles in Julia. The package contains all the necessary data structures to curate morphological measurements and helper functions to transform, normalize and visualize profiles. Robust statistical distances and permutation tests enable quantification of the significance of the observed changes despite the high fraction of outliers inherent to high-content screens. This package also simplifies visual artifact diagnostics, thus streamlining a bottleneck of morphological analyses. We showcase the features of the package by analyzing a chemical imaging screen, in which the morphological profiles prove to be informative about the compounds' mechanisms of action and can be conveniently integrated with the network localization of molecular targets. AVAILABILITY AND IMPLEMENTATION: The Julia package is available on GitHub: https://github.com/menchelab/BioProfiling.jl. We also provide Jupyter notebooks reproducing our analyses: https://github.com/menchelab/BioProfilingNotebooks. The data underlying this article are available from FigShare, at https://doi.org/10.6084/m9.figshare.14784678.v2. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Linguagens de Programação , Software , Microscopia
7.
Blood ; 137(15): 2033-2045, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33513601

RESUMO

Exocytosis of cytotoxic granules (CG) by lymphocytes is required for the elimination of infected and malignant cells. Impairments in this process underly a group of diseases with dramatic hyperferritinemic inflammation termed hemophagocytic lymphohistiocytosis (HLH). Although genetic and functional studies of HLH have identified proteins controlling distinct steps of CG exocytosis, the molecular mechanisms that spatiotemporally coordinate CG release remain partially elusive. We studied a patient exhibiting characteristic clinical features of HLH associated with markedly impaired cytotoxic T lymphocyte (CTL) and natural killer (NK) cell exocytosis functions, who beared biallelic deleterious mutations in the gene encoding the small GTPase RhoG. Experimental ablation of RHOG in a model cell line and primary CTLs from healthy individuals uncovered a hitherto unappreciated role of RhoG in retaining CGs in the vicinity of the plasma membrane (PM), a fundamental prerequisite for CG exocytotic release. We discovered that RhoG engages in a protein-protein interaction with Munc13-4, an exocytosis protein essential for CG fusion with the PM. We show that this interaction is critical for docking of Munc13-4+ CGs to the PM and subsequent membrane fusion and release of CG content. Thus, our study illuminates RhoG as a novel essential regulator of human lymphocyte cytotoxicity and provides the molecular pathomechanism behind the identified here and previously unreported genetically determined form of HLH.


Assuntos
Células Matadoras Naturais/patologia , Linfo-Histiocitose Hemofagocítica/genética , Linfócitos T Citotóxicos/patologia , Proteínas rho de Ligação ao GTP/genética , Linhagem Celular , Células Cultivadas , Deleção de Genes , Mutação em Linhagem Germinativa , Humanos , Lactente , Células Matadoras Naturais/metabolismo , Linfo-Histiocitose Hemofagocítica/patologia , Masculino , Modelos Moleculares , Linfócitos T Citotóxicos/metabolismo , Proteínas rho de Ligação ao GTP/química
8.
PLoS Comput Biol ; 18(2): e1009156, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35157694

RESUMO

Lymphocytes have been described to perform different motility patterns such as Brownian random walks, persistent random walks, and Lévy walks. Depending on the conditions, such as confinement or the distribution of target cells, either Brownian or Lévy walks lead to more efficient interaction with the targets. The diversity of these motility patterns may be explained by an adaptive response to the surrounding extracellular matrix (ECM). Indeed, depending on the ECM composition, lymphocytes either display a floating motility without attaching to the ECM, or sliding and stepping motility with respectively continuous or discontinuous attachment to the ECM, or pivoting behaviour with sustained attachment to the ECM. Moreover, on the long term, lymphocytes either perform a persistent random walk or a Brownian-like movement depending on the ECM composition. How the ECM affects cell motility is still incompletely understood. Here, we integrate essential mechanistic details of the lymphocyte-matrix adhesions and lymphocyte intrinsic cytoskeletal induced cell propulsion into a Cellular Potts model (CPM). We show that the combination of de novo cell-matrix adhesion formation, adhesion growth and shrinkage, adhesion rupture, and feedback of adhesions onto cell propulsion recapitulates multiple lymphocyte behaviours, for different lymphocyte subsets and various substrates. With an increasing attachment area and increased adhesion strength, the cells' speed and persistence decreases. Additionally, the model predicts random walks with short-term persistent but long-term subdiffusive properties resulting in a pivoting type of motility. For small adhesion areas, the spatial distribution of adhesions emerges as a key factor influencing cell motility. Small adhesions at the front allow for more persistent motility than larger clusters at the back, despite a similar total adhesion area. In conclusion, we present an integrated framework to simulate the effects of ECM proteins on cell-matrix adhesion dynamics. The model reveals a sufficient set of principles explaining the plasticity of lymphocyte motility.


Assuntos
Junções Célula-Matriz , Matriz Extracelular , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Junções Célula-Matriz/fisiologia , Simulação por Computador , Matriz Extracelular/metabolismo
9.
J Autoimmun ; 119: 102610, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33621930

RESUMO

CD4+ T cell trafficking is a fundamental property of adaptive immunity. In this study, we uncover a novel role for histone deacetylase 1 (HDAC1) in controlling effector CD4+ T cell migration, thereby providing mechanistic insight into why a T cell-specific deletion of HDAC1 protects against experimental autoimmune encephalomyelitis (EAE). HDAC1-deficient CD4+ T cells downregulated genes associated with leukocyte extravasation. In vitro, HDAC1-deficient CD4+ T cells displayed aberrant morphology and migration on surfaces coated with integrin LFA-1 ligand ICAM-1 and showed an impaired ability to arrest on and to migrate across a monolayer of primary mouse brain microvascular endothelial cells under physiological flow. Moreover, HDAC1 deficiency reduced homing of CD4+ T cells into the intestinal epithelium and lamina propria preventing weight-loss, crypt damage and intestinal inflammation in adoptive CD4+ T cell transfer colitis. This correlated with reduced expression levels of LFA-1 integrin chains CD11a and CD18 as well as of selectin ligands CD43, CD44 and CD162 on transferred circulating HDAC1-deficient CD4+ T cells. Our data reveal that HDAC1 controls T cell-mediated autoimmunity via the regulation of CD4+ T cell trafficking into the CNS and intestinal tissues.


Assuntos
Autoimunidade , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Quimiotaxia de Leucócito/imunologia , Histona Desacetilase 1/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Animais , Biomarcadores , Adesão Celular , Quimiotaxia de Leucócito/genética , Modelos Animais de Doenças , Suscetibilidade a Doenças , Encefalomielite Autoimune Experimental/diagnóstico , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Células Endoteliais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Histona Desacetilase 1/genética , Imuno-Histoquímica , Inflamação/diagnóstico , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout
10.
Blood ; 132(22): 2362-2374, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30254128

RESUMO

ARPC1B is a key factor for the assembly and maintenance of the ARP2/3 complex that is involved in actin branching from an existing filament. Germline biallelic mutations in ARPC1B have been recently described in 6 patients with clinical features of combined immunodeficiency (CID), whose neutrophils and platelets but not T lymphocytes were studied. We hypothesized that ARPC1B deficiency may also lead to cytoskeleton and functional defects in T cells. We have identified biallelic mutations in ARPC1B in 6 unrelated patients with early onset disease characterized by severe infections, autoimmune manifestations, and thrombocytopenia. Immunological features included T-cell lymphopenia, low numbers of naïve T cells, and hyper-immunoglobulin E. Alteration in ARPC1B protein structure led to absent/low expression by flow cytometry and confocal microscopy. This molecular defect was associated with the inability of patient-derived T cells to extend an actin-rich lamellipodia upon T-cell receptor (TCR) stimulation and to assemble an immunological synapse. ARPC1B-deficient T cells additionally displayed impaired TCR-mediated proliferation and SDF1-α-directed migration. Gene transfer of ARPC1B in patients' T cells using a lentiviral vector restored both ARPC1B expression and T-cell proliferation in vitro. In 2 of the patients, in vivo somatic reversion restored ARPC1B expression in a fraction of lymphocytes and was associated with a skewed TCR repertoire. In 1 revertant patient, memory CD8+ T cells expressing normal levels of ARPC1B displayed improved T-cell migration. Inherited ARPC1B deficiency therefore alters T-cell cytoskeletal dynamics and functions, contributing to the clinical features of CID.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Mutação em Linhagem Germinativa , Síndromes de Imunodeficiência/genética , Linfócitos T/patologia , Complexo 2-3 de Proteínas Relacionadas à Actina/química , Feminino , Homozigoto , Humanos , Síndromes de Imunodeficiência/patologia , Masculino , Modelos Moleculares , Linhagem , Conformação Proteica , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/patologia , Linfócitos T/metabolismo
11.
Int Immunol ; 31(4): 239-250, 2019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30778577

RESUMO

The intrinsic immunosuppressive properties of regulatory T (Treg) cells can be harnessed for therapeutic approaches aiming at down-modulating harmful immune reactions. In this context, expanded type 1 Treg cells (Tr1 cells) specific for ovalbumin (ova-Tr1 cells) have been tested for clinical efficacy in the treatment of autoimmune disorders such as refractory Crohn's disease (CD). The clinical use of these therapeutic products warrants exploration of their mechanism of action. Here, we identified a relationship between the CD activity index and the expression of lytic molecules by the ova-Tr1 cells administered in the previously reported First-in-Man study [Crohn's And Treg cells Study 1 (CATS1) study]. Accordingly, ova-Tr1 cells were found to carry granules containing high levels of lytic molecules, including multiple granzymes and granulysin. These cells displayed a T-cell receptor (TCR)-independent cytotoxic activity, which was preferentially directed toward myeloid cell lines and monocyte-derived dendritic cells. Upon contact with myeloid cells, ova-Tr1 cells induced their apoptosis via a perforin-independent and a granulysin/granzyme-dependent mechanism. As compared to CD8+ cytotoxic T cells, ova-Tr1 cells required more time to lyse target cells and displayed a more gradual lytic activity over time. Notably, this activity was sustained over days resulting in the control of myeloid cell populations at a relatively low ratio. Our study reveals that ova-Tr1 cells are endowed with a sustained cytotoxic activity that relies on a unique combination of granulysin and granzymes and that preferentially eliminates myeloid target cells in a TCR-independent manner.


Assuntos
Antígenos de Diferenciação de Linfócitos T/metabolismo , Linfócitos T CD8-Positivos/imunologia , Granzimas/metabolismo , Células Mieloides/imunologia , Linfócitos T Reguladores/imunologia , Antígenos/imunologia , Células Cultivadas , Citotoxicidade Imunológica , Humanos , Ativação Linfocitária , Ovalbumina/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T , Células THP-1 , Células U937
13.
J Cell Sci ; 130(1): 97-103, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27034137

RESUMO

Border cell migration during Drosophila oogenesis is a potent model to study collective cell migration, a process involved in development and metastasis. Border cell clusters adopt two main types of behaviour during migration: linear and rotational. However, the molecular mechanism controlling the switch from one to the other is unknown. Here, we demonstrate that non-muscle Myosin II (NMII, also known as Spaghetti squash) activity controls the linear-to-rotational switch. Furthermore, we show that the regulation of NMII takes place downstream of guidance receptor signalling and is critical to ensure efficient collective migration. This study thus provides new insight into the molecular mechanism coordinating the different cell behaviours in a migrating cluster.


Assuntos
Movimento Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Miosina Tipo II/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Animais , Receptores ErbB/metabolismo , Rotação , Imagem com Lapso de Tempo
14.
J Allergy Clin Immunol ; 142(1): 219-234, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29248492

RESUMO

BACKGROUND: Wiskott-Aldrich syndrome (WAS), X-linked thrombocytopenia (XLT), and X-linked neutropenia, which are caused by WAS mutations affecting Wiskott-Aldrich syndrome protein (WASp) expression or activity, manifest in immunodeficiency, autoimmunity, genomic instability, and lymphoid and other cancers. WASp supports filamentous actin formation in the cytoplasm and gene transcription in the nucleus. Although the genetic basis for XLT/WAS has been clarified, the relationships between mutant forms of WASp and the diverse features of these disorders remain ill-defined. OBJECTIVE: We sought to define how dysfunctional gene transcription is causally linked to the degree of TH cell deficiency and genomic instability in the XLT/WAS clinical spectrum. METHODS: In human TH1- or TH2-skewing cell culture systems, cotranscriptional R-loops (RNA/DNA duplex and displaced single-stranded DNA) and DNA double-strand breaks (DSBs) were monitored in multiple samples from patients with XLT and WAS and in normal T cells depleted of WASp. RESULTS: WASp deficiency provokes increased R-loops and R-loop-mediated DSBs in TH1 cells relative to TH2 cells. Mechanistically, chromatin occupancy of serine 2-unphosphorylated RNA polymerase II is increased, and that of topoisomerase 1, an R-loop preventing factor, is decreased at R-loop-enriched regions of IFNG and TBX21 (TH1 genes) in TH1 cells. These aberrations accompany increased unspliced (intron-retained) and decreased spliced mRNA of IFNG and TBX21 but not IL13 (TH2 gene). Significantly, increased cellular load of R-loops and DSBs, which are normalized on RNaseH1-mediated suppression of ectopic R-loops, inversely correlates with disease severity scores. CONCLUSION: Transcriptional R-loop imbalance is a novel molecular defect causative in TH1 immunodeficiency and genomic instability in patients with WAS. The study proposes that cellular R-loop load could be used as a potential biomarker for monitoring symptom severity and prognostic outcome in the XLT-WAS clinical spectrum and could be targeted therapeutically.


Assuntos
Instabilidade Genômica/genética , Células Th1/patologia , Síndrome de Wiskott-Aldrich/genética , Células Cultivadas , Dano ao DNA/genética , Humanos , Transcrição Gênica , Síndrome de Wiskott-Aldrich/patologia
15.
J Allergy Clin Immunol ; 142(5): 1589-1604.e11, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29751004

RESUMO

BACKGROUND: The actin-interacting protein WD repeat-containing protein 1 (WDR1) promotes cofilin-dependent actin filament turnover. Biallelic WDR1 mutations have been identified recently in an immunodeficiency/autoinflammatory syndrome with aberrant morphology and function of myeloid cells. OBJECTIVE: Given the pleiotropic expression of WDR1, here we investigated to what extent it might control the lymphoid arm of the immune system in human subjects. METHODS: Histologic and detailed immunologic analyses were performed to elucidate the role of WDR1 in the development and function of B and T lymphocytes. RESULTS: Here we identified novel homozygous and compound heterozygous WDR1 missense mutations in 6 patients belonging to 3 kindreds who presented with respiratory tract infections, skin ulceration, and stomatitis. In addition to defective adhesion and motility of neutrophils and monocytes, WDR1 deficiency was associated with aberrant T-cell activation and B-cell development. T lymphocytes appeared to develop normally in the patients, except for the follicular helper T-cell subset. However, peripheral T cells from the patients accumulated atypical actin structures at the immunologic synapse and displayed reduced calcium flux and mildly impaired proliferation on T-cell receptor stimulation. WDR1 deficiency was associated with even more severe abnormalities of the B-cell compartment, including peripheral B-cell lymphopenia, paucity of B-cell progenitors in the bone marrow, lack of switched memory B cells, reduced clonal diversity, abnormal B-cell spreading, and increased apoptosis on B-cell receptor/Toll-like receptor stimulation. CONCLUSION: Our study identifies a novel role for WDR1 in adaptive immunity, highlighting WDR1 as a central regulator of actin turnover during formation of the B-cell and T-cell immunologic synapses.


Assuntos
Linfócitos B/imunologia , Sinapses Imunológicas , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/imunologia , Linfócitos T/imunologia , Imunidade Adaptativa , Adulto , Criança , Feminino , Humanos , Masculino , Mutação , Adulto Jovem
16.
Blood ; 126(16): 1911-20, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26272216

RESUMO

Follicular lymphoma (FL) results from the accumulation of malignant germinal center (GC) B cells leading to the development of an indolent and largely incurable disease. FL cells remain highly dependent on B-cell receptor (BCR) signaling and on a specific cell microenvironment, including T cells, macrophages, and stromal cells. Importantly, FL BCR is characterized by a selective pressure to retain surface immunoglobulin M (IgM) BCR despite an active class-switch recombination process, and by the introduction, in BCR variable regions, of N-glycosylation acceptor sites harboring unusual high-mannose oligosaccharides. However, the relevance of these 2 FL BCR features for lymphomagenesis remains unclear. In this study, we demonstrated that IgM(+) FL B cells activated a stronger BCR signaling network than IgG(+) FL B cells and normal GC B cells. BCR expression level and phosphatase activity could both contribute to such heterogeneity. Moreover, we underlined that a subset of IgM(+) FL samples, displaying highly mannosylated BCR, efficiently bound dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), which could in turn trigger delayed but long-lasting BCR aggregation and activation. Interestingly, DC-SIGN was found within the FL cell niche in situ. Finally, M2 macrophages induced a DC-SIGN-dependent adhesion of highly mannosylated IgM(+) FL B cells and triggered BCR-associated kinase activation. Interestingly, pharmacologic BCR inhibitors abolished such crosstalk between macrophages and FL B cells. Altogether, our data support an important role for DC-SIGN-expressing infiltrating cells in the biology of FL and suggest that they could represent interesting therapeutic targets.


Assuntos
Moléculas de Adesão Celular/imunologia , Regulação da Expressão Gênica/imunologia , Imunoglobulina M/imunologia , Lectinas Tipo C/imunologia , Linfoma Folicular/imunologia , Macrófagos/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de Superfície Celular/imunologia , Transdução de Sinais/imunologia , Comunicação Celular/imunologia , Técnicas de Cocultura , Feminino , Glicosilação , Humanos , Linfoma Folicular/patologia , Macrófagos/patologia , Masculino , Células Tumorais Cultivadas
17.
Proc Natl Acad Sci U S A ; 110(15): 6073-8, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23536289

RESUMO

It is presently assumed that lethal hit delivery by cytotoxic T lymphocytes (CTLs) is mechanistically linked to centrosome polarization toward target cells, leading to dedicated release of lytic granules within a confined secretory domain. Here we provide three lines of evidence showing that this mechanism might not apply as a general paradigm for lethal hit delivery. First, in CTLs stimulated with immobilized peptide-MHC complexes, lytic granules and microtubule organizing center localization into synaptic areas are spatio-temporally dissociated, as detected by total internal reflection fluorescence microscopy. Second, in many CTL/target cell conjugates, lytic granule secretion precedes microtubule polarization and can be detected during the first minute after cell-cell contact. Third, inhibition of microtubule organizing center and centrosome polarization impairs neither lytic granule release at the CTL synapse nor killing efficiency. Our results broaden current views of CTL biology by revealing an extremely rapid step of lytic granule secretion and by showing that microtubule organizing center polarization is dispensable for efficient lethal hit delivery.


Assuntos
Centrossomo/ultraestrutura , Sinapses Imunológicas , Microtúbulos/metabolismo , Vesículas Secretórias/metabolismo , Linfócitos T Citotóxicos/citologia , Polaridade Celular , Centrossomo/metabolismo , Grânulos Citoplasmáticos/metabolismo , Citotoxicidade Imunológica , Citometria de Fluxo , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Centro Organizador dos Microtúbulos/ultraestrutura , Proteína Quinase C/metabolismo , Transdução de Sinais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA