Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
2.
FASEB J ; 35(2): e21201, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33496989

RESUMO

In recent years, it has become apparent that the gut microbiome can influence the functioning and pathological states of organs and systems throughout the body. In this study, we tested the hypothesis that the gut microbiome has a major role in the disruption of the blood-brain barrier (BBB) in the spontaneously hypertensive stroke prone rats (SHRSP), an animal model for hypertensive cerebral small vessel disease (CSVD). Loss of BBB is thought to be an early and initiating component to the full expression of CSVD in animal models and humans. To test this hypothesis, newly born SHRSP pups were placed with foster dams of the SHRSP strain or dams of the WKY strain, the control strain that does not demonstrate BBB dysfunction or develop hypertensive CSVD. Similarly, WKY pups were placed with foster dams of the same or opposite strain. The rationale for cross fostering is that the gut microbiomes are shaped by environmental bacteria of the foster dam and the nesting surroundings. Analysis of the bacterial genera in feces, using 16S rRNA analysis, demonstrated that the gut microbiome in the rat pups was influenced by the foster dam. SHRSP offspring fostered on WKY dams had systolic blood pressures (SBPs) that were significantly decreased by 26 mmHg (P < .001) from 16-20 weeks, compared to SHRSP offspring fostered on SHRSP dams. Similarly WKY offspring fostered on SHRSP dams had significantly increased SBP compared to WKY offspring fostered on WKY dams, although the magnitude of SBP change was not as robust. At ~20 weeks of age, rats fostered on SHRSP dams showed enhanced inflammation in distal ileum regardless of the strain of the offspring. Disruption of BBB integrity, an early marker of CSVD onset, was improved in SHRSPs that were fostered on WKY dams when compared to the SHRSP rats fostered on SHRSP dams. Although SHRSP is a genetic model for CSVD, environmental factors such as the gut microbiota of the foster dam have a major influence in the loss of BBB integrity.


Assuntos
Pressão Sanguínea , Barreira Hematoencefálica/patologia , Microbioma Gastrointestinal , Animais , Barreira Hematoencefálica/metabolismo , Meio Ambiente , Íleo/microbiologia , Íleo/patologia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
3.
Circ Res ; 127(4): 453-465, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32354259

RESUMO

RATIONALE: The elderly experience profound systemic responses after stroke, which contribute to higher mortality and more severe long-term disability. Recent studies have revealed that stroke outcomes can be influenced by the composition of gut microbiome. However, the potential benefits of manipulating the gut microbiome after injury is unknown. OBJECTIVE: To determine if restoring youthful gut microbiota after stroke aids in recovery in aged subjects, we altered the gut microbiome through young fecal transplant gavage in aged mice after experimental stroke. Further, the effect of direct enrichment of selective bacteria producing short-chain fatty acids (SCFAs) was tested as a more targeted and refined microbiome therapy. METHODS AND RESULTS: Aged male mice (18-20 months) were subjected to ischemic stroke by middle cerebral artery occlusion. We performed fecal transplant gavage 3 days after middle cerebral artery occlusion using young donor biome (2-3 months) or aged biome (18-20 months). At day 14 after stroke, aged stroke mice receiving young fecal transplant gavage had less behavioral impairment, and reduced brain and gut inflammation. Based on data from microbial sequencing and metabolomics analysis demonstrating that young fecal transplants contained much higher SCFA levels and related bacterial strains, we selected 4 SCFA-producers (Bifidobacterium longum, Clostridium symbiosum, Faecalibacterium prausnitzii, and Lactobacillus fermentum) for transplantation. These SCFA-producers alleviated poststroke neurological deficits and inflammation, and elevated gut, brain and plasma SCFA concentrations in aged stroke mice. CONCLUSIONS: This is the first study suggesting that the poor stroke recovery in aged mice can be reversed via poststroke bacteriotherapy following the replenishment of youthful gut microbiome via modulation of immunologic, microbial, and metabolomic profiles in the host.


Assuntos
Ácidos Graxos Voláteis/biossíntese , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiologia , Infarto da Artéria Cerebral Média/terapia , AVC Isquêmico/terapia , Fatores Etários , Animais , Bifidobacterium longum/metabolismo , Química Encefálica , Clostridium symbiosum/metabolismo , Faecalibacterium prausnitzii/metabolismo , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/sangue , Fezes/química , Interleucina-17/biossíntese , Intestinos/química , Linfócitos Intraepiteliais/fisiologia , Limosilactobacillus fermentum/metabolismo , Masculino , Camundongos , Mucina-2/metabolismo , Mucina-4/metabolismo , Linfócitos T Reguladores/fisiologia
4.
Ann Neurol ; 84(1): 23-36, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29733457

RESUMO

OBJECTIVE: Chronic systemic inflammation contributes to the pathogenesis of many age-related diseases. Although not well understood, alterations in the gut microbiota, or dysbiosis, may be responsible for age-related inflammation. METHODS: Using stroke as a disease model, we tested the hypothesis that a youthful microbiota, when established in aged mice, produces positive outcomes following ischemic stroke. Conversely, an aged microbiota, when established in young mice, produces negative outcomes after stroke. Young and aged male mice had either a young or an aged microbiota established by fecal transplant gavage (FTG). Mice were subjected to ischemic stroke (middle cerebral artery occlusion; MCAO) or sham surgery. During the subsequent weeks, mice underwent behavioral testing and fecal samples were collected for 16S ribosomal RNA analysis of bacterial content. RESULTS: We found that the microbiota is altered after experimental stroke in young mice and resembles the biome of uninjured aged mice. In aged mice, the ratio of Firmicutes to Bacteroidetes (F:B), two main bacterial phyla in gut microbiota, increased ∼9-fold (p < 0.001) compared to young. This increased F:B ratio in aged mice is indicative of dysbiosis. Altering the microbiota in young by fecal gavage to resemble that of aged mice (∼6-fold increase in F:B ratio, p < 0.001) increased mortality following MCAO, decreased performance in behavioral testing, and increased cytokine levels. Conversely, altering the microbiota in aged to resemble that of young (∼9-fold decrease in F:B ratio, p < 0.001) increased survival and improved recovery following MCAO. INTERPRETATION: Aged biome increased the levels of systemic proinflammatory cytokines. We conclude that the gut microbiota can be modified to positively impact outcomes from age-related diseases. Ann Neurol 2018;83:23-36.


Assuntos
Envelhecimento , Microbioma Gastrointestinal , Inflamação/microbiologia , Acidente Vascular Cerebral/microbiologia , Fatores Etários , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Comportamento Exploratório , Transplante de Microbiota Fecal/métodos , Inflamação/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Força Muscular/fisiologia , Exame Neurológico , RNA Ribossômico 16S/metabolismo , Acidente Vascular Cerebral/fisiopatologia
6.
Physiol Genomics ; 49(2): 96-104, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011881

RESUMO

Gut dysbiosis has been linked to cardiovascular diseases including hypertension. We tested the hypothesis that hypertension could be induced in a normotensive strain of rats or attenuated in a hypertensive strain of rats by exchanging the gut microbiota between the two strains. Cecal contents from spontaneously hypertensive stroke prone rats (SHRSP) were pooled. Similarly, cecal contents from normotensive WKY rats were pooled. Four-week-old recipient WKY and SHR rats, previously treated with antibiotics to reduce the native microbiota, were gavaged with WKY or SHRSP microbiota, resulting in four groups; WKY with WKY microbiota (WKY g-WKY), WKY with SHRSP microbiota (WKY g-SHRSP), SHR with SHRSP microbiota (SHR g-SHRSP), and SHR with WKY microbiota (SHR g-WKY). Systolic blood pressure (SBP) was measured weekly using tail-cuff plethysmography. At 11.5 wk of age systolic blood pressure increased 26 mmHg in WKY g-SHRSP compared with that in WKY g-WKY (182 ± 8 vs. 156 ± 8 mmHg, P = 0.02). Although the SBP in SHR g-WKY tended to decrease compared with SHR g-SHRSP, the differences were not statistically significant. Fecal pellets were collected at 11.5 wk of age for identification of the microbiota by sequencing the 16S ribosomal RNA gene. We observed a significant increase in the Firmicutes:Bacteroidetes ratio in the hypertensive WKY g-SHRSP, as compared with the normotensive WKY g-WKY (P = 0.042). Relative abundance of multiple taxa correlated with SBP. We conclude that gut dysbiosis can directly affect SBP. Manipulation of the gut microbiota may represent an innovative treatment for hypertension.


Assuntos
Microbioma Gastrointestinal , Hipertensão/microbiologia , Animais , Biodiversidade , Pressão Sanguínea , Fezes/microbiologia , Hipertensão/fisiopatologia , Metaboloma , Filogenia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Sístole
7.
Curr Hypertens Rep ; 19(4): 35, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28365886

RESUMO

PURPOSE OF REVIEW: Obstructive sleep apnea (OSA) is a significant risk factor for systemic hypertension and other cardiovascular diseases. While this relationship has been firmly established, a detailed understanding of how OSA leads to hypertension is lacking. This review will examine the emerging idea that the gut microbiota plays a role in the development of hypertension, including that associated with OSA. RECENT FINDINGS: Disruption of the normal composition of the gut microbiota, termed dysbiosis, has been identified in a number of metabolic and cardiovascular diseases, including diabetes, obesity, and atherosclerosis. Recently, a number of studies have demonstrated gut dysbiosis in various animal models of hypertension as well as in hypertensive patients. Evidence is now emerging that gut dysbiosis plays a causal role in the development of OSA-induced hypertension. In this review, we will examine the evidence that gut dysbiosis plays a role in OSA-induced hypertension. We will discuss potential mechanisms linking OSA to gut dysbiosis, examine how gut dysbiosis may be linked to hypertension, and highlight how this understanding may be utilized for the development of future therapeutics.


Assuntos
Microbioma Gastrointestinal , Hipertensão/microbiologia , Apneia Obstrutiva do Sono/etiologia , Animais , Disbiose , Humanos , Hipertensão/fisiopatologia , Obesidade/complicações , Fatores de Risco
9.
Am J Physiol Regul Integr Comp Physiol ; 305(4): R334-42, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23761641

RESUMO

Obstructive sleep apnea (OSA), a condition in which the upper airway collapses during sleep, is strongly associated with metabolic and cardiovascular diseases. Little is known how OSA affects the cerebral circulation. The goals of this study were 1) to develop a rat model of chronic OSA that involved apnea and 2) to test the hypothesis that 4 wk of apneas during the sleep cycle alters endothelium-mediated dilations in middle cerebral arteries (MCAs). An obstruction device, which was chronically implanted into the trachea of rats, inflated to obstruct the airway 30 times/h for 8 h during the sleep cycle. After 4 wk of apneas, MCAs were isolated, pressurized, and exposed to luminally applied ATP, an endothelial P2Y2 receptor agonist that dilates through endothelial-derived nitric oxide (NO) and endothelial-dependent hyperpolarization (EDH). Dilations to ATP were attenuated ~30% in MCAs from rats undergoing apneas compared with those from a sham control group (P < 0.04 group effect; n = 7 and 10, respectively). When the NO component of the dilation was blocked to isolate the EDH component, the response to ATP in MCAs from the sham and apnea groups was similar. This finding suggests that the attenuated dilation to ATP must occur through reduced NO. In summary, we have successfully developed a novel rat model for chronic OSA that incorporates apnea during the sleep cycle. Using this model, we demonstrate that endothelial dysfunction occurred by 4 wk of apnea, likely increasing the vulnerability of the brain to cerebrovascular related accidents.


Assuntos
Trifosfato de Adenosina/farmacologia , Modelos Animais de Doenças , Endotélio Vascular/efeitos dos fármacos , Artéria Cerebral Média/efeitos dos fármacos , Agonistas do Receptor Purinérgico P2Y/farmacologia , Apneia Obstrutiva do Sono/metabolismo , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Fatores Biológicos/metabolismo , Doença Crônica , Relação Dose-Resposta a Droga , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Masculino , Artéria Cerebral Média/metabolismo , Artéria Cerebral Média/fisiopatologia , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Ratos Long-Evans , Respiração , Sono , Apneia Obstrutiva do Sono/etiologia , Apneia Obstrutiva do Sono/fisiopatologia , Fatores de Tempo , Traqueia/fisiopatologia
10.
J Am Heart Assoc ; 12(11): e029218, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37260032

RESUMO

Background Obstructive sleep apnea (OSA) is an independent risk factor for the development of hypertension. We have demonstrated that OSA induces gut dysbiosis, and this dysbiotic microbiota contributes to hypertension. However, the mechanisms linking gut dysbiosis to blood pressure regulation remain unclear. Recent studies demonstrate that gut dysbiosis can induce a proinflammatory response of the host resulting in peripheral and neuroinflammation, key factors in the development of hypertension. We hypothesized that OSA induces inflammation in the gut that contributes to neuroinflammation and hypertension. Methods and Results OSA was induced in 8-week-old male rats. After 2 weeks of apneas, lymphocytes were isolated from aorta, brain, cecum, ileum, mesenteric lymph node, and spleen for flow cytometry. To examine the role of interleukin-17a, a monoclonal antibody was administered to neutralize interleukin-17a. Lymphocytes originating from the gut were tracked by labeling with carboxyfluorescein succinimidyl ester dye. OSA led to a significant decrease in T regulatory cells along with an increase in T helper (TH) 17 cells in the ileum, cecum, and brain. Interleukin-17a neutralization significantly reduced blood pressure, increased T regulatory cells, and decreased TH1 cells in the ileum, cecum, and brain of OSA rats. TH1, TH2, and TH17 cells from the gut were found to migrate to the mesenteric lymph node, spleen, and brain with increased frequency in rats with OSA. Conclusions OSA induces a proinflammatory response in the gut and brain that involves interleukin-17a signaling. Gut dysbiosis may serve as the trigger for gut and neuroinflammation, and treatments to prevent or reverse gut dysbiosis may prove useful in reducing neuroinflammation and hypertension.


Assuntos
Microbioma Gastrointestinal , Hipertensão , Apneia Obstrutiva do Sono , Ratos , Masculino , Animais , Interleucina-17 , Doenças Neuroinflamatórias , Disbiose/complicações , Microbioma Gastrointestinal/fisiologia , Apneia Obstrutiva do Sono/complicações
11.
Camb Prism Precis Med ; 1: e26, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38550938

RESUMO

The single largest contributor to human mortality is cardiovascular disease, the top risk factor for which is hypertension (HTN). The last two decades have placed much emphasis on the identification of genetic factors contributing to HTN. As a result, over 1,500 genetic alleles have been associated with human HTN. Mapping studies using genetic models of HTN have yielded hundreds of blood pressure (BP) loci but their individual effects on BP are minor, which limits opportunities to target them in the clinic. The value of collecting genome-wide association data is evident in ongoing research, which is beginning to utilize these data at individual-level genetic disparities combined with artificial intelligence (AI) strategies to develop a polygenic risk score (PRS) for the prediction of HTN. However, PRS alone may or may not be sufficient to account for the incidence and progression of HTN because genetics is responsible for <30% of the risk factors influencing the etiology of HTN pathogenesis. Therefore, integrating data from other nongenetic factors influencing BP regulation will be important to enhance the power of PRS. One such factor is the composition of gut microbiota, which constitute a more recently discovered important contributor to HTN. Studies to-date have clearly demonstrated that the transition from normal BP homeostasis to a state of elevated BP is linked to compositional changes in gut microbiota and its interaction with the host. Here, we first document evidence from studies on gut dysbiosis in animal models and patients with HTN followed by a discussion on the prospects of using microbiota data to develop a metagenomic risk score (MRS) for HTN to be combined with PRS and a clinical risk score (CRS). Finally, we propose that integrating AI to learn from the combined PRS, MRS and CRS may further enhance predictive power for the susceptibility and progression of HTN.

12.
J Biol Chem ; 286(52): 44606-19, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22069332

RESUMO

The cardiomyocyte circadian clock directly regulates multiple myocardial functions in a time-of-day-dependent manner, including gene expression, metabolism, contractility, and ischemic tolerance. These same biological processes are also directly influenced by modification of proteins by monosaccharides of O-linked ß-N-acetylglucosamine (O-GlcNAc). Because the circadian clock and protein O-GlcNAcylation have common regulatory roles in the heart, we hypothesized that a relationship exists between the two. We report that total cardiac protein O-GlcNAc levels exhibit a diurnal variation in mouse hearts, peaking during the active/awake phase. Genetic ablation of the circadian clock specifically in cardiomyocytes in vivo abolishes diurnal variations in cardiac O-GlcNAc levels. These time-of-day-dependent variations appear to be mediated by clock-dependent regulation of O-GlcNAc transferase and O-GlcNAcase protein levels, glucose metabolism/uptake, and glutamine synthesis in an NAD-independent manner. We also identify the clock component Bmal1 as an O-GlcNAc-modified protein. Increasing protein O-GlcNAcylation (through pharmacological inhibition of O-GlcNAcase) results in diminished Per2 protein levels, time-of-day-dependent induction of bmal1 gene expression, and phase advances in the suprachiasmatic nucleus clock. Collectively, these data suggest that the cardiomyocyte circadian clock increases protein O-GlcNAcylation in the heart during the active/awake phase through coordinated regulation of the hexosamine biosynthetic pathway and that protein O-GlcNAcylation in turn influences the timing of the circadian clock.


Assuntos
Relógios Circadianos/fisiologia , Glicoproteínas/metabolismo , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Glicoproteínas/genética , Glicosilação , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Musculares/genética , Miocárdio/citologia , Miócitos Cardíacos/citologia , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo
13.
Circ Res ; 106(4): 647-58, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20203314

RESUMO

Circadian misalignment has been implicated in the development of obesity, diabetes mellitus, and cardiovascular disease. Time-of-day-dependent synchronization of organisms with their environment is mediated by circadian clocks. This cell autonomous mechanism has been identified within all cardiovascular-relevant cell types, including cardiomyocytes. Recent molecular- and genetic-based studies suggest that the cardiomyocyte circadian clock influences multiple myocardial processes, including transcription, signaling, growth, metabolism, and contractile function. Following an appreciation of its physiological roles, the cardiomyocyte circadian clock has recently been linked to the pathogenesis of heart disease in response to adverse stresses, such as ischemia/reperfusion, in animal models. The purpose of this review is therefore to highlight recent advances regarding the roles of the cardiomyocyte circadian clock in both myocardial physiology and pathophysiology (ie, health and disease).


Assuntos
Relógios Biológicos , Doenças Cardiovasculares/metabolismo , Ritmo Circadiano , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Animais , Relógios Biológicos/genética , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/fisiopatologia , Ritmo Circadiano/genética , Metabolismo Energético , Regulação da Expressão Gênica , Frequência Cardíaca , Humanos , Contração Miocárdica , Miócitos Cardíacos/patologia , Recuperação de Função Fisiológica , Regeneração , Transdução de Sinais/genética
14.
Circ Res ; 106(3): 546-50, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20007913

RESUMO

RATIONALE: Cardiovascular physiology and pathophysiology vary dramatically over the course of the day. For example, myocardial infarction onset occurs with greater incidence during the early morning hours in humans. However, whether myocardial infarction tolerance exhibits a time-of-day dependence is unknown. OBJECTIVE: To investigate whether time of day of an ischemic insult influences clinically relevant outcomes in mice. METHODS AND RESULTS: Wild-type mice were subjected to ischemia/reperfusion (I/R) (45 minutes of ischemia followed by 1 day or 1 month of reperfusion) at distinct times of the day, using the closed-chest left anterior descending coronary artery occlusion model. Following 1 day of reperfusion, hearts subjected to ischemia at the sleep-to-wake transition (zeitgeber time [ZT]12) resulted in 3.5-fold increases in infarct size compared to hearts subjected to ischemia at the wake-to-sleep transition (ZT0). Following 1 month of reperfusion, prior ischemic event at ZT12 versus ZT0 resulted in significantly greater infarct volume, fibrosis, and adverse remodeling, as well as greater depression of contractile function. Genetic ablation of the cardiomyocyte circadian clock (termed cardiomyocyte-specific circadian clock mutant [CCM] mice) attenuated/abolished time-of-day variations in I/R outcomes observed in wild-type hearts. Investigation of Akt and glycogen synthase kinase-3beta in wild-type and CCM hearts identified these kinases as potential mechanistic ties between the cardiomyocyte circadian clock and I/R tolerance. CONCLUSIONS: We expose a profound time-of-day dependence for I/R tolerance, which is mediated by the cardiomyocyte circadian clock. Further understanding of I/R tolerance rhythms will potentially provide novel insight regarding the etiology and treatment of ischemia-induced cardiac dysfunction.


Assuntos
Ritmo Circadiano/fisiologia , Quinase 3 da Glicogênio Sintase/fisiologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/fisiologia , Fatores de Transcrição ARNTL/biossíntese , Fatores de Transcrição ARNTL/genética , Animais , Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Fatores de Transcrição de Zíper de Leucina Básica/genética , Ritmo Circadiano/genética , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/fisiologia , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Masculino , Camundongos , Camundongos Mutantes , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/enzimologia , Fosforilação , Fosfosserina/análise , Processamento de Proteína Pós-Traducional , Recuperação de Função Fisiológica , Sono/fisiologia , Fatores de Tempo , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Vigília/fisiologia
15.
Sci Rep ; 12(1): 8534, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595870

RESUMO

Gut dysbiosis, a pathological imbalance of bacteria, has been shown to contribute to the development of hypertension (HT), systemic- and neuro-inflammation, and blood-brain barrier (BBB) disruption in spontaneously hypertensive stroke prone rats (SHRSP). However, to date individual species that contribute to HT in the SHRSP model have not been identified. One potential reason, is that nearly all studies of the SHRSP gut microbiota have analyzed samples from rats with established HT. The goal of this study was to examine the SHRSP gut microbiota before, during, and after the onset of hypertension, and in normotensive WKY control rats over the same age range. We hypothesized that we could identify key microbes involved in the development of HT by comparing WKY and SHRSP microbiota during the pre-hypertensive state and longitudinally. Systolic blood pressure (SBP) was measured by tail-cuff plethysmography and fecal microbiota analyzed by16S rRNA gene sequencing. SHRSP showed significant elevations in SBP, as compared to WKY, beginning at 8 weeks of age (p < 0.05 at each time point). Bacterial community structure was significantly different between WKY and SHRSP as early as 4 weeks of age, and remained different throughout the study (p = 0.001-0.01). At the phylum level we observed significantly reduced Firmicutes and Deferribacterota, and elevated Bacteroidota, Verrucomicrobiota, and Proteobacteria, in pre-hypertensive SHRSP, as compared to WKY. At the genus level we identified 18 bacteria whose relative abundance was significantly different in SHRSP versus WKY at the pre-hypertensive ages of 4 or 6 weeks. In an attempt to further refine bacterial candidates that might contribute to the SHRSP phenotype, we compared the functional capacity of WKY versus SHRSP microbial communities. We identified significant differences in amino acid metabolism. Using untargeted metabolomics we found significant reductions in metabolites of the tryptophan-kynurenine pathway and increased indole metabolites in SHRSP versus WKY plasma. Overall, we provide further evidence that gut dysbiosis contributes to hypertension in the SHRSP model, and suggest for the first time the potential involvement of tryptophan metabolizing microbes.


Assuntos
Microbioma Gastrointestinal , Hipertensão , Acidente Vascular Cerebral , Envelhecimento , Animais , Pressão Sanguínea/fisiologia , Disbiose , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Triptofano
16.
J Biol Chem ; 285(5): 2918-29, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-19940111

RESUMO

Maintenance of circadian alignment between an organism and its environment is essential to ensure metabolic homeostasis. Synchrony is achieved by cell autonomous circadian clocks. Despite a growing appreciation of the integral relation between clocks and metabolism, little is known regarding the direct influence of a peripheral clock on cellular responses to fatty acids. To address this important issue, we utilized a genetic model of disrupted clock function specifically in cardiomyocytes in vivo (termed cardiomyocyte clock mutant (CCM)). CCM mice exhibited altered myocardial response to chronic high fat feeding at the levels of the transcriptome and lipidome as well as metabolic fluxes, providing evidence that the cardiomyocyte clock regulates myocardial triglyceride metabolism. Time-of-day-dependent oscillations in myocardial triglyceride levels, net triglyceride synthesis, and lipolysis were markedly attenuated in CCM hearts. Analysis of key proteins influencing triglyceride turnover suggest that the cardiomyocyte clock inactivates hormone-sensitive lipase during the active/awake phase both at transcriptional and post-translational (via AMP-activated protein kinase) levels. Consistent with increased net triglyceride synthesis during the end of the active/awake phase, high fat feeding at this time resulted in marked cardiac steatosis. These data provide evidence for direct regulation of triglyceride turnover by a peripheral clock and reveal a potential mechanistic explanation for accelerated metabolic pathologies after prevalent circadian misalignment in Western society.


Assuntos
Regulação da Expressão Gênica , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Triglicerídeos/metabolismo , Animais , Ritmo Circadiano , Ácidos Graxos , Perfilação da Expressão Gênica , Coração , Masculino , Camundongos , Perfusão , Processamento de Proteína Pós-Traducional , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
17.
Gut Microbes ; 12(1): 1-14, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32897773

RESUMO

Aging is associated with cognitive decline and decreased concentrations of short-chain fatty acids (SCFAs) in the gut. SCFAs are significant in that they are protective to the gut and other organs. We tested the hypothesis that the aged gut microbiome alone is sufficient to decrease SCFAs in the host and produce cognitive decline. Fecal transplant gavages (FTGs) from aged (18-20 months) or young (2-3 months) male C57BL/6 mice into germ-free male C57BL/6 mice (N = 11 per group) were initiated at ~3 months of age. Fecal samples were collected and behavioral testing was performed over the study period. Bacterial community structures and relative abundances were measured in fecal samples by sequencing the bacterial 16S ribosomal RNA gene. Mice with aged and young microbiomes showed clear differences in bacterial ß diversity at 30, 60, and 90 d (P = .001 for each) after FTGs. The fecal SCFAs, acetate, propionate, and butyrate (microbiome effect, P < .01 for each) were decreased in mice with an aged microbiome. Mice with an aged microbiome demonstrated depressive-like behavior, impaired short-term memory, and impaired spatial memory over the 3 months following the initial FTG as assessed by the tail suspension (P = .008), the novel object recognition (P < .001), and the Barnes Maze (P = .030) tests, respectively. We conclude that an aged microbiome alone is sufficient to decrease SCFAs in the host and to produce cognitive decline.


Assuntos
Envelhecimento , Cognição , Disfunção Cognitiva/terapia , Ácidos Graxos Voláteis/metabolismo , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiologia , Animais , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Encéfalo/imunologia , Disfunção Cognitiva/etiologia , Citocinas/sangue , Depressão , Ácidos Graxos Voláteis/análise , Fezes/química , Fezes/microbiologia , Vida Livre de Germes , Leucócitos/imunologia , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL , Subpopulações de Linfócitos T/imunologia
19.
Hypertension ; 72(5): 1141-1150, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30354816

RESUMO

Disruption of the gut microbiota, termed gut dysbiosis, has been described in animal models of hypertension and hypertensive patients. We have shown that gut dysbiosis plays a causal role in the development of hypertension in a rat model of obstructive sleep apnea (OSA). Functional analysis of the dysbiotic microbiota in OSA demonstrates a loss of short chain fatty acid-producing bacteria. However, measurements of short chain fatty acid concentrations and testing of their role in blood pressure regulation are lacking. We hypothesized that reduced short chain fatty acids in the gut are responsible for OSA-induced hypertension. OSA significantly increased systolic blood pressure at 7 and 14 days ( P<0.05), an effect that was abolished by the probiotic Clostridium butyricum or the prebiotic Hylon VII. The 16S rRNA analysis identified several short chain fatty acid-producing bacteria that were significantly increased by Cbutyricum and Hylon treatment. Acetate concentration in the cecum was decreased by 48% after OSA ( P<0.05), an effect that was prevented by Cbutyricum and Hylon. Cbutyricum and Hylon reduced OSA-induced dysbiosis, epithelial goblet cell loss, mucus barrier thinning, and activation of brain microglia ( P<0.05 for each). To examine the role of acetate in OSA-induced hypertension, we chronically infused acetate into the cecum during 2 weeks of sham or OSA. Restoring cecal acetate concentration prevented OSA-induced gut inflammation and hypertension ( P<0.05). These studies identify acetate as a key player in OSA-induced hypertension. We demonstrate that various methods to increase cecal acetate concentrations are protective from the adverse effects of OSA on the microbiota, gut, brain, and blood pressure.


Assuntos
Acetatos/uso terapêutico , Hipertensão/prevenção & controle , Prebióticos , Probióticos , Apneia Obstrutiva do Sono/complicações , Animais , Pressão Sanguínea/fisiologia , Modelos Animais de Doenças , Microbioma Gastrointestinal/fisiologia , Hipertensão/complicações , Masculino , Ratos , Ratos Long-Evans
20.
J Cereb Blood Flow Metab ; 37(8): 2806-2819, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27798273

RESUMO

Circadian clock components oscillate in cells of the cardiovascular system. Disruption of these oscillations has been observed in cardiovascular diseases. We hypothesized that obstructive sleep apnea, which is associated with cerebrovascular diseases, disrupts the cerebrovascular circadian clock and rhythms in vascular function. Apneas were produced in rats during sleep. Following two weeks of sham or obstructive sleep apnea, cerebral arteries were isolated over 24 h for mRNA and functional analysis. mRNA expression of clock genes exhibited 24-h rhythms in cerebral arteries of sham rats (p < 0.05). Interestingly, peak expression of clock genes was significantly lower following obstructive sleep apnea (p < 0.05). Obstructive sleep apnea did not alter clock genes in the heart, or rhythms in locomotor activity. Isolated posterior cerebral arteries from sham rats exhibited a diurnal rhythm in sensitivity to luminally applied ATP, being most responsive at the beginning of the active phase (p < 0.05). This rhythm was absent in arteries from obstructive sleep apnea rats (p < 0.05). Rhythms in ATP sensitivity in sham vessels were absent, and not different from obstructive sleep apnea, following treatment with L-NAME and indomethacin. We conclude that cerebral arteries possess a functional circadian clock and exhibit a diurnal rhythm in vasoreactivity to ATP. Obstructive sleep apnea attenuates these rhythms in cerebral arteries, potentially contributing to obstructive sleep apnea-associated cerebrovascular disease.


Assuntos
Artérias Cerebrais/fisiopatologia , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Proteínas Circadianas Period/genética , Apneia Obstrutiva do Sono/fisiopatologia , Animais , Transtornos Cerebrovasculares/etiologia , Transtornos Cerebrovasculares/genética , Transtornos Cerebrovasculares/fisiopatologia , Relógios Circadianos/genética , Ritmo Circadiano/genética , Modelos Animais de Doenças , Ratos Long-Evans , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/genética , Vasodilatação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA