Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurosci Biobehav Rev ; : 105928, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39427812

RESUMO

Even with accumulating knowledge, no consensus regarding the understanding of intelligence or cognition exists, and the universal brain bases for these functions remain unclear. Traditionally, our understanding of cognition is based on self-evident principles that appear indisputable when looking only at our species; however, this can distance us from understanding its essence (anthropocentrism, corticocentrism, intellectocentrism, neurocentrism, and idea of orthogenesis of brain evolution). Herein, we use several examples from biology to demonstrate the usefulness of comparative ways of thinking in relativizing these biases. We discuss the relationship between the number of neurons and cognition and draw attention to the highly developed cognitive performance of animals with small brains, to some "tricks" of evolution, to how animals cope with small hardware, to some animals with high-quality brains with an alternative architecture to vertebrates, and to surprising basal cognitive skills in aneural, unicellular organisms. Cognition can be supplemented by the idea of a multicellular organism as a continuum, with many levels of cognitive function, including the possible basal learning in single cells.

2.
Neurosci Biobehav Rev ; 140: 104816, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35940307

RESUMO

Animals and humans share similar reactions to the effects of addictive substances, including those of their brain networks to drugs. Our review focuses on simple invertebrate models, particularly the honeybee (Apis mellifera), and on the effects of drugs on bee behaviour and brain functions. The drug effects in bees are very similar to those described in humans. Furthermore, the honeybee community is a superorganism in which many collective functions outperform the simple sum of individual functions. The distribution of reward functions in this superorganism is unique - although sublimated at the individual level, community reward functions are of higher quality. This phenomenon of collective reward may be extrapolated to other animal species living in close and strictly organised societies, i.e. humans. The relationship between sociality and reward, based on use of similar parts of the neural network (social decision-making network in mammals, mushroom body in bees), suggests a functional continuum of reward and sociality in animals.


Assuntos
Drosophila , Recompensa , Animais , Abelhas , Encéfalo , Humanos , Insetos , Mamíferos , Comportamento Social
3.
Neurosci Biobehav Rev ; 135: 104570, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35131397

RESUMO

In classical neuroscience, Dale´s principle postulates that neuronal identity is conferred by the specific neurotransmitter that it releases. However, the brain might be more tractable to specific situations regardless of specific specialisation which may contradict this principle. Hence, this constrained approach of how we perceive and study the nervous system must be revisited and revised, specifically by studying the dopaminergic system. We presume a relatively flexible change in the dopaminergic system due to neuronal activity or environmental changes. While the parallel between the reward system of mammals and insects is generally well accepted, herein, we extend the idea that the insect nervous system might also possess incredible plasticity, similar to the mammalian system. In this review, we critically evaluate the available information about the reward system in vertebrates and invertebrates, emphasising the dopaminergic neuronal plasticity, a challenge to the classical Dale's principle. Thus, neurotransmitter switching significantly disrupts the static idea of neural network organisation and suggests greater possibilities for a dynamic response to the current life context of organisms.


Assuntos
Drosophila , Corpos Pedunculados , Animais , Dopamina , Neurônios Dopaminérgicos/fisiologia , Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Humanos , Mamíferos , Corpos Pedunculados/fisiologia , Neurotransmissores/fisiologia
4.
Neurosci Biobehav Rev ; 123: 301-319, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421541

RESUMO

The fruit fly Drosophila melanogaster brain is the most extensively investigated model of a reward system in insects. Drosophila can discriminate between rewarding and punishing environmental stimuli and consequently undergo associative learning. Functional models, especially those modelling mushroom bodies, are constantly being developed using newly discovered information, adding to the complexity of creating a simple model of the reward system. This review aims to clarify whether its reward system also includes a hedonic component. Neurochemical systems that mediate the 'wanting' component of reward in the Drosophila brain are well documented, however, the systems that mediate the pleasure component of reward in mammals, including those involving the endogenous opioid and endocannabinoid systems, are unlikely to be present in insects. The mushroom body components exhibit differential developmental age and different functional processes. We propose a hypothetical hierarchy of the levels of reinforcement processing in response to particular stimuli, and the parallel processes that take place concurrently. The possible presence of activity-silencing and meta-satiety inducing levels in Drosophila should be further investigated.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Corpos Pedunculados , Reforço Psicológico , Recompensa
5.
Insects ; 11(2)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059419

RESUMO

Titanus giganteus is one of the largest insects in the world, but unfortunately, there is a lack of basic information about its biology. Previous papers have mostly described Titanus morphology or taxonomy, but studies concerning its anatomy and physiology are largely absent. Thus, we employed microscopic, physiological, and analytical methods to partially fill this gap. Our study focused on a detailed analysis of the antennal sensilla, where coeloconic sensilla, grouped into irregularly oval fields, and sensilla trichoidea were found. Further, the inspection of the internal organs showed apparent degeneration of the gut and almost total absence of fat body. The gut was already empty; however, certain activity of digestive enzymes was recorded. The brain was relatively small, and the ventral nerve cord consisted of three ganglia in the thorax and four ganglia in the abdomen. Each testis was composed of approximately 30 testicular follicles filled with a clearly visible sperm. Chromatographic analysis of lipids in the flight muscles showed the prevalence of storage lipids that contained 13 fatty acids, and oleic acid represented 60% of them. Some of our findings indicate that adult Titanus rely on previously accumulated reserves rather than feeding from the time of eclosion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA