Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
PLoS Comput Biol ; 19(1): e1010870, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689464

RESUMO

The control of protein synthesis and the overall levels of various proteins in the cell is critical for achieving homoeostasis. Regulation of protein levels can occur at the transcriptional level, where the total number of messenger RNAs in the overall transcriptome are controlled, or at the translational level, where interactions of proteins and ribosomes with the messenger RNA determine protein translational efficiency. Although transcriptional control of mRNA levels is the most commonly used regulatory control mechanism in cells, positive-sense single-stranded RNA viruses often utilise translational control mechanisms to regulate their proteins in the host cell. Here I detail a computational method for stochastically simulating protein synthesis on a dynamic messenger RNA using the Gillespie algorithm, where the mRNA is allowed to co-translationally fold in response to ribosome movement. Applying the model to the test case of the bacteriophage MS2 virus, I show that the models ability to accurately reproduce experimental measurements of coat protein production and translational repression of the viral RNA dependant RNA polymerase at high coat protein concentrations. The computational techniques reported here open up the potential to examine the infection dynamics of a ssRNA virus in a host cell at the level of the genomic RNA, as well as examine general translation control mechanisms present in polycistronic mRNAs.


Assuntos
Biossíntese de Proteínas , Ribossomos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Cinética , Ribossomos/genética , Ribossomos/metabolismo , Regulação da Expressão Gênica , Proteínas/metabolismo
2.
PLoS Pathog ; 16(12): e1009146, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33370422

RESUMO

Picornaviruses are important viral pathogens, but despite extensive study, the assembly process of their infectious virions is still incompletely understood, preventing the development of anti-viral strategies targeting this essential part of the life cycle. We report the identification, via RNA SELEX and bioinformatics, of multiple RNA sites across the genome of a typical enterovirus, enterovirus-E (EV-E), that each have affinity for the cognate viral capsid protein (CP) capsomer. Many of these sites are evolutionarily conserved across known EV-E variants, suggesting they play essential functional roles. Cryo-electron microscopy was used to reconstruct the EV-E particle at ~2.2 Å resolution, revealing extensive density for the genomic RNA. Relaxing the imposed symmetry within the reconstructed particles reveals multiple RNA-CP contacts, a first for any picornavirus. Conservative mutagenesis of the individual RNA-contacting amino acid side chains in EV-E, many of which are conserved across the enterovirus family including poliovirus, is lethal but does not interfere with replication or translation. Anti-EV-E and anti-poliovirus aptamers share sequence similarities with sites distributed across the poliovirus genome. These data are consistent with the hypothesis that these RNA-CP contacts are RNA Packaging Signals (PSs) that play vital roles in assembly and suggest that the RNA PSs are evolutionarily conserved between pathogens within the family, augmenting the current protein-only assembly paradigm for this family of viruses.


Assuntos
Proteínas do Capsídeo/metabolismo , Enterovirus/fisiologia , RNA Viral/genética , Montagem de Vírus/fisiologia , Sequência de Aminoácidos , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Enterovirus/ultraestrutura , RNA Viral/ultraestrutura
3.
PLoS Comput Biol ; 17(8): e1009306, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34428224

RESUMO

The vast majority of viruses consist of a nucleic acid surrounded by a protective icosahedral protein shell called the capsid. During viral infection of a host cell, the timing and efficiency of the assembly process is important for ensuring the production of infectious new progeny virus particles. In the class of single-stranded RNA (ssRNA) viruses, the assembly of the capsid takes place in tandem with packaging of the ssRNA genome in a highly cooperative co-assembly process. In simple ssRNA viruses such as the bacteriophage MS2 and small RNA plant viruses such as STNV, this cooperative process results from multiple interactions between the protein shell and sites in the RNA genome which have been termed packaging signals. Using a stochastic assembly algorithm which includes cooperative interactions between the protein shell and packaging signals in the RNA genome, we demonstrate that highly efficient assembly of STNV capsids arises from a set of simple local rules. Altering the local assembly rules results in different nucleation scenarios with varying assembly efficiencies, which in some cases depend strongly on interactions with RNA packaging signals. Our results provide a potential simple explanation based on local assembly rules for the ability of some ssRNA viruses to spontaneously assemble around charged polymers and other non-viral RNAs in vitro.


Assuntos
Vírus de Plantas/fisiologia , RNA Viral/genética , Vírus Satélites/genética , Montagem de Vírus , Proteínas do Capsídeo/metabolismo , Genes Virais , Conformação de Ácido Nucleico , Vírus de Plantas/genética , RNA Viral/química , Processos Estocásticos
4.
Proc Natl Acad Sci U S A ; 116(9): 3556-3561, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30737287

RESUMO

Double-stranded DNA viruses, including bacteriophages and herpesviruses, package their genomes into preformed capsids, using ATP-driven motors. Seeking to advance structural and mechanistic understanding, we established in vitro packaging for a thermostable bacteriophage, P23-45 of Thermus thermophilus Both the unexpanded procapsid and the expanded mature capsid can package DNA in the presence of packaging ATPase over the 20 °C to 70 °C temperature range, with optimum activity at 50 °C to 65 °C. Cryo-EM reconstructions for the mature and immature capsids at 3.7-Å and 4.4-Å resolution, respectively, reveal conformational changes during capsid expansion. Capsomer interactions in the expanded capsid are reinforced by formation of intersubunit ß-sheets with N-terminal segments of auxiliary protein trimers. Unexpectedly, the capsid has T=7 quasi-symmetry, despite the P23-45 genome being twice as large as those of known T=7 phages, in which the DNA is compacted to near-crystalline density. Our data explain this anomaly, showing how the canonical HK97 fold has adapted to double the volume of the capsid, while maintaining its structural integrity. Reconstructions of the procapsid and the expanded capsid defined the structure of the single vertex containing the portal protein. Together with a 1.95-Å resolution crystal structure of the portal protein and DNA packaging assays, these reconstructions indicate that capsid expansion affects the conformation of the portal protein, while still allowing DNA to be packaged. These observations suggest a mechanism by which structural events inside the capsid can be communicated to the outside.


Assuntos
Bacteriófagos/ultraestrutura , Capsídeo/ultraestrutura , Empacotamento do DNA/genética , Vírus de DNA/ultraestrutura , Bacteriófagos/genética , Microscopia Crioeletrônica , Vírus de DNA/genética , DNA Viral/genética , DNA Viral/ultraestrutura , Vírion/genética , Vírion/ultraestrutura , Montagem de Vírus/genética
5.
PLoS Comput Biol ; 16(2): e1007618, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32049979

RESUMO

Computational modelling of in vivo protein synthesis is highly complicated, as it requires the simulation of ribosomal movement over the entire transcriptome, as well as consideration of the concentration effects from 40+ different types of tRNAs and numerous other protein factors. Here I report on the development of a stochastic model for protein translation that is capable of simulating the dynamical process of in vivo protein synthesis in a prokaryotic cell containing several thousand unique mRNA sequences, with explicit nucleotide information for each, and report on a number of biological predictions which are beyond the scope of existing models. In particular, I show that, when the complex network of concentration dependent interactions between elongation factors, tRNAs, ribosomes, and other factors required for protein synthesis are included in full detail, several biological phenomena, such as the increasing peptide elongation rate with bacterial growth rate, are predicted as emergent properties of the model. The stochastic model presented here demonstrates the importance of considering the translational process at this level of detail, and provides a platform to interrogate various aspects of translation that are difficult to study in more coarse-grained models.


Assuntos
Simulação por Computador , Ribossomos/metabolismo , Processos Estocásticos , Cinética , Elongação Traducional da Cadeia Peptídica , Reprodutibilidade dos Testes
6.
Proc Natl Acad Sci U S A ; 112(7): 2227-32, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25646435

RESUMO

We present direct experimental evidence that assembly of a single-stranded RNA virus occurs via a packaging signal-mediated mechanism. We show that the sequences of coat protein recognition motifs within multiple, dispersed, putative RNA packaging signals, as well as their relative spacing within a genomic fragment, act collectively to influence the fidelity and yield of capsid self-assembly in vitro. These experiments confirm that the selective advantages for viral yield and encapsidation specificity, predicted from previous modeling of packaging signal-mediated assembly, are found in Nature. Regions of the genome that act as packaging signals also function in translational and transcriptional enhancement, as well as directly coding for the coat protein, highlighting the density of encoded functions within the viral RNA. Assembly and gene expression are therefore direct molecular competitors for different functional folds of the same RNA sequence. The strongest packaging signal in the test fragment, encodes a region of the coat protein that undergoes a conformational change upon contact with packaging signals. A similar phenomenon occurs in other RNA viruses for which packaging signals are known. These contacts hint at an even deeper density of encoded functions in viral RNA, which if confirmed, would have profound consequences for the evolution of this class of pathogens.


Assuntos
Vírus de RNA/genética , RNA Viral/genética , Proteínas do Capsídeo/metabolismo , Vírus de RNA/metabolismo , RNA Viral/química , RNA Viral/metabolismo , Eletricidade Estática
7.
Biophys J ; 113(3): 506-516, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28793206

RESUMO

Previously, a stochastic model of single-stranded RNA virus assembly was created to model the cooperative effects between capsid proteins and genomic RNA that would occur in a packaging signal-mediated assembly process. In such an assembly scenario, multiple secondary structural elements from within the RNA, termed "packaging signals" (PS), contact coat proteins and facilitate efficient capsid assembly. In this work, the assembly model is extended to incorporate explicit nucleotide sequence information as well as simple aspects of RNA folding that would be occurring during the RNA/capsid coassembly process. Applying this paradigm to a dodecahedral viral capsid, a computer-derived nucleotide sequence is evolved de novo that is optimal for packaging the RNA into capsids, while also containing capacity for coding for a viral protein. Analysis of the effects of mutations on the ability of the RNA sequence to successfully package into a viral capsid reveals a complex fitness landscape where the majority of mutations are neutral with respect to packaging efficiency with a small number of mutations resulting in a near-complete loss of RNA packaging. Moreover, the model shows how attempts to ablate PSs in the viral RNA sequence may result in redundant PSs already present in the genome fulfilling their packaging role. This explains why recent experiments that attempt to ablate putative PSs may not see an effect on packaging. This modeling framework presents an example of how an implicit mapping can be made from genotype to a fitness parameter important for viral biology, i.e., viral capsid yield, with potential applications to theoretical models of viral evolution.


Assuntos
Modelos Biológicos , RNA Viral/genética , RNA Viral/metabolismo , Montagem de Vírus , Sequência de Bases , Cinética , Mutação , Conformação de Ácido Nucleico , RNA Viral/química
8.
Nucleic Acids Res ; 43(12): 5708-15, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-25990741

RESUMO

In this paper I outline a fast method called KFOLD for implementing the Gillepie algorithm to stochastically sample the folding kinetics of an RNA molecule at single base-pair resolution. In the same fashion as the KINFOLD algorithm, which also uses the Gillespie algorithm to predict folding kinetics, KFOLD stochastically chooses a new RNA secondary structure state that is accessible from the current state by a single base-pair addition/deletion following the Gillespie procedure. However, unlike KINFOLD, the KFOLD algorithm utilizes the fact that many of the base-pair addition/deletion reactions and their corresponding rates do not change between each step in the algorithm. This allows KFOLD to achieve a substantial speed-up in the time required to compute a prediction of the folding pathway and, for a fixed number of base-pair moves, performs logarithmically with sequence size. This increase in speed opens up the possibility of studying the kinetics of much longer RNA sequences at single base-pair resolution while also allowing for the RNA folding statistics of smaller RNA sequences to be computed much more quickly.


Assuntos
Algoritmos , Dobramento de RNA , Sequência de Bases , Biologia Computacional/métodos , Cinética , RNA/química , RNA de Protozoário/química , Trypanosomatina/genética
9.
Proc Natl Acad Sci U S A ; 111(14): 5361-6, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24706827

RESUMO

One of the important puzzles in virology is how viruses assemble the protein containers that package their genomes rapidly and efficiently in vivo while avoiding triggering their hosts' antiviral defenses. Viral assembly appears directed toward a relatively small subset of the vast number of all possible assembly intermediates and pathways, akin to Levinthal's paradox for the folding of polypeptide chains. Using an in silico assembly model, we demonstrate that this reduction in complexity can be understood if aspects of in vivo assembly, which have mostly been neglected in in vitro experimental and theoretical modeling assembly studies, are included in the analysis. In particular, we show that the increasing viral coat protein concentration that occurs in infected cells plays unexpected and vital roles in avoiding potential kinetic assembly traps, significantly reducing the number of assembly pathways and assembly initiation sites, and resulting in enhanced assembly efficiency and genome packaging specificity. Because capsid assembly is a vital determinant of the overall fitness of a virus in the infection process, these insights have important consequences for our understanding of how selection impacts on the evolution of viral quasispecies. These results moreover suggest strategies for optimizing the production of protein nanocontainers for drug delivery and of virus-like particles for vaccination. We demonstrate here in silico that drugs targeting the specific RNA-capsid protein contacts can delay assembly, reduce viral load, and lead to an increase of misencapsidation of cellular RNAs, hence opening up unique avenues for antiviral therapy.


Assuntos
Antivirais/farmacologia , Modelos Biológicos , Montagem de Vírus , RNA Viral/metabolismo , Proteínas Virais/metabolismo
10.
PLoS Comput Biol ; 11(3): e1004146, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25793998

RESUMO

Cryo-electron microscopy permits 3-D structures of viral pathogens to be determined in remarkable detail. In particular, the protein containers encapsulating viral genomes have been determined to high resolution using symmetry averaging techniques that exploit the icosahedral architecture seen in many viruses. By contrast, structure determination of asymmetric components remains a challenge, and novel analysis methods are required to reveal such features and characterize their functional roles during infection. Motivated by the important, cooperative roles of viral genomes in the assembly of single-stranded RNA viruses, we have developed a new analysis method that reveals the asymmetric structural organization of viral genomes in proximity to the capsid in such viruses. The method uses geometric constraints on genome organization, formulated based on knowledge of icosahedrally-averaged reconstructions and the roles of the RNA-capsid protein contacts, to analyse cryo-electron tomographic data. We apply this method to the low-resolution tomographic data of a model virus and infer the unique asymmetric organization of its genome in contact with the protein shell of the capsid. This opens unprecedented opportunities to analyse viral genomes, revealing conserved structural features and mechanisms that can be targeted in antiviral drug design.


Assuntos
Genoma Viral/genética , Vírus de RNA/genética , Vírus de RNA/ultraestrutura , Biologia Computacional , Microscopia Crioeletrônica , Levivirus , Modelos Moleculares , Tomografia
11.
Proc Natl Acad Sci U S A ; 109(3): 811-6, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22207627

RESUMO

Genome packaging into preformed viral procapsids is driven by powerful molecular motors. The small terminase protein is essential for the initial recognition of viral DNA and regulates the motor's ATPase and nuclease activities during DNA translocation. The crystal structure of a full-length small terminase protein from the Siphoviridae bacteriophage SF6, comprising the N-terminal DNA binding, the oligomerization core, and the C-terminal ß-barrel domains, reveals a nine-subunit circular assembly in which the DNA-binding domains are arranged around the oligomerization core in a highly flexible manner. Mass spectrometry analysis and four further crystal structures show that, although the full-length protein exclusively forms nine-subunit assemblies, protein constructs missing the C-terminal ß-barrel form both nine-subunit and ten-subunit assemblies, indicating the importance of the C terminus for defining the oligomeric state. The mechanism by which a ring-shaped small terminase oligomer binds viral DNA has not previously been elucidated. Here, we probed binding in vitro by using EPR and surface plasmon resonance experiments, which indicated that interaction with DNA is mediated exclusively by the DNA-binding domains and suggested a nucleosome-like model in which DNA binds around the outside of the protein oligomer.


Assuntos
DNA/metabolismo , Proteínas Motores Moleculares/química , Siphoviridae/fisiologia , Montagem de Vírus/fisiologia , DNA/química , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Espectrometria de Massas , Modelos Moleculares , Proteínas Motores Moleculares/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Deleção de Sequência , Siphoviridae/enzimologia
12.
J Mol Biol ; 434(20): 167797, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-35998704

RESUMO

Many single-stranded, positive-sense RNA viruses regulate assembly of their infectious virions by forming multiple, cognate coat protein (CP)-genome contacts at sites termed Packaging Signals (PSs). We have determined the secondary structures of the bacteriophage MS2 ssRNA genome (gRNA) frozen in defined states using constraints from X-ray synchrotron footprinting (XRF). Comparison of the footprints from phage and transcript confirms the presence of multiple PSs in contact with CP dimers in the former. This is also true for a virus-like particle (VLP) assembled around the gRNA in vitro in the absence of the single-copy Maturation Protein (MP) found in phage. Since PS folds are present at many sites across gRNA transcripts, it appears that this genome has evolved to facilitate this mechanism of assembly regulation. There are striking differences between the gRNA-CP contacts seen in phage and the VLP, suggesting that the latter are inappropriate surrogates for aspects of phage structure/function. Roughly 50% of potential PS sites in the gRNA are not in contact with the protein shell of phage. However, many of these sit adjacent to, albeit not in contact with, PS-binding sites on CP dimers. We hypothesize that these act as PSs transiently during assembly but subsequently dissociate. Combining the XRF data with PS locations from an asymmetric cryo-EM reconstruction suggests that the genome positions of such dissociations are non-random and may facilitate infection. The loss of many PS-CP interactions towards the 3' end of the gRNA would allow this part of the genome to transit more easily through the narrow basal body of the pilus extruding machinery. This is the known first step in phage infection. In addition, each PS-CP dissociation event leaves the protein partner trapped in a non-lowest free-energy conformation. This destabilizes the protein shell which must disassemble during infection, further facilitating this stage of the life-cycle.


Assuntos
Proteínas do Capsídeo , Levivirus , Montagem de Vírus , Proteínas do Capsídeo/química , Genoma Viral/genética , Levivirus/química , Levivirus/patogenicidade , Levivirus/fisiologia , RNA Viral/genética , Montagem de Vírus/genética
13.
Viruses ; 13(1)2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374798

RESUMO

Hepatitis B virus (HBV) is a major focus of antiviral research worldwide. The International Coalition to Eliminate HBV, together with the World Health Organisation (WHO), have prioritised the search for a cure, with the goal of eliminating deaths from viral hepatitis by 2030. We present here a comprehensive model of intracellular HBV infection dynamics that includes all molecular processes currently targeted by drugs and agrees well with the observed outcomes of several clinical studies. The model reveals previously unsuspected kinetic behaviour in the formation of sub-viral particles, which could lead to a better understanding of the immune responses to infection. It also enables rapid comparative assessment of the impact of different treatment options and their potential synergies as combination therapies. A comparison of available and currently developed treatment options reveals that combinations of multiple capsid assembly inhibitors perform best.


Assuntos
Vírus da Hepatite B/fisiologia , Hepatite B/virologia , Algoritmos , Antivirais/farmacologia , Antivirais/uso terapêutico , Simulação por Computador , Hepatite B/tratamento farmacológico , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Humanos , Cinética , Modelos Biológicos , Montagem de Vírus/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
14.
J Phys Condens Matter ; 21(3): 035116, 2009 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21817274

RESUMO

We present a theoretical study of the low frequency vibrational modes of the M13 bacteriophage using a fully atomistic model. Using ideas from electronic structure theory, the few lowest vibrational modes of the M13 bacteriophage are determined using classical harmonic analysis. The relative Raman intensity is estimated for each of the mechanical modes using a bond polarizability model. Comparison of the atomic mechanical modes calculated here with modes derived from elastic continuum theory shows that a much richer spectrum emerges from an atomistic picture.

15.
Curr Opin Virol ; 31: 74-81, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30078702

RESUMO

Virus assembly, a key stage in any viral life cycle, had long been considered to be primarily driven by protein-protein interactions and nonspecific interactions between genomic RNA and capsid protein. We review here a modelling paradigm for RNA virus assembly that illustrates the crucial roles of multiple dispersed, specific interactions between viral genomes and coat proteins in capsid assembly. The model reveals how multiple sequence-structure motifs in the genomic RNA, termed packaging signals, with a shared coat protein recognition motif enable viruses to overcome a viral assembly-equivalent of Levinthal's Paradox in protein folding. The fitness advantages conferred by this mechanism suggest that it should be widespread in viruses, opening up new perspectives on viral evolution and anti-viral therapy.


Assuntos
Proteínas do Capsídeo/química , Genoma Viral , Vírus de RNA/genética , Vírus de RNA/fisiologia , Montagem de Vírus , Sítios de Ligação , Evolução Molecular , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , RNA Viral/genética
17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(1 Pt 1): 011906, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17677493

RESUMO

A theoretical framework for predicting low frequency Raman vibrational spectra of viral capsids is presented and applied to the M13 bacteriophage. The method uses a continuum elastic theory for the vibrational modes and a bond-charge polarizability model of an amorphous material to roughly predict the Raman intensities. Comparison is made to experimental results for the M13 bacteriophage virus.


Assuntos
Algoritmos , Bacteriófago M13/química , Bacteriófago M13/fisiologia , Capsídeo/química , Capsídeo/fisiologia , Modelos Biológicos , Análise Espectral Raman/métodos , Simulação por Computador
18.
Viruses ; 9(11)2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29149077

RESUMO

The rapid occurrence of therapy-resistant mutant strains provides a challenge for anti-viral therapy. An ideal drug target would be a highly conserved molecular feature in the viral life cycle, such as the packaging signals in the genomes of RNA viruses that encode an instruction manual for their efficient assembly. The ubiquity of this assembly code in RNA viruses, including major human pathogens, suggests that it confers selective advantages. However, their impact on viral evolution cannot be assessed in current models of viral infection that lack molecular details of virus assembly. We introduce here a quasispecies-based model of a viral infection that incorporates structural and mechanistic knowledge of packaging signal function in assembly to construct a phenotype-fitness map, capturing the impact of this RNA code on assembly yield and efficiency. Details of viral replication and assembly inside an infected host cell are coupled with a population model of a viral infection, allowing the occurrence of therapy resistance to be assessed in response to drugs inhibiting packaging signal recognition. Stochastic simulations of viral quasispecies evolution in chronic HCV infection under drug action and/or immune clearance reveal that drugs targeting all RNA signals in the assembly code collectively have a high barrier to drug resistance, even though each packaging signal in isolation has a lower barrier than conventional drugs. This suggests that drugs targeting the RNA signals in the assembly code could be promising routes for exploitation in anti-viral drug design.


Assuntos
Evolução Molecular , Quase-Espécies/genética , Vírus de RNA/genética , Montagem de Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , Simulação por Computador , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Farmacorresistência Viral Múltipla/genética , Humanos , Quase-Espécies/efeitos dos fármacos , Vírus de RNA/efeitos dos fármacos , Vírus de RNA/patogenicidade , RNA Viral/genética , Viroses/virologia
19.
Elife ; 62017 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-28922109

RESUMO

Segmented RNA viruses are ubiquitous pathogens, which include influenza viruses and rotaviruses. A major challenge in understanding their assembly is the combinatorial problem of a non-random selection of a full genomic set of distinct RNAs. This process involves complex RNA-RNA and protein-RNA interactions, which are often obscured by non-specific binding at concentrations approaching in vivo assembly conditions. Here, we present direct experimental evidence of sequence-specific inter-segment interactions between rotavirus RNAs, taking place in a complex RNA- and protein-rich milieu. We show that binding of the rotavirus-encoded non-structural protein NSP2 to viral ssRNAs results in the remodeling of RNA, which is conducive to formation of stable inter-segment contacts. To identify the sites of these interactions, we have developed an RNA-RNA SELEX approach for mapping the sequences involved in inter-segment base-pairing. Our findings elucidate the molecular basis underlying inter-segment interactions in rotaviruses, paving the way for delineating similar RNA-RNA interactions that govern assembly of other segmented RNA viruses.


Assuntos
Genoma Viral , Dobramento de RNA , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Rotavirus/genética , Proteínas não Estruturais Virais/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , RNA Viral/genética , Rotavirus/fisiologia
20.
Nat Commun ; 8(1): 83, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710463

RESUMO

A correction has been published and is appended to both the HTML and PDF versions of this paper. The error has not been fixed in the paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA