RESUMO
Quiescence, a temporary withdrawal from the cell cycle, plays a key role in tissue homeostasis and regeneration. Quiescence is increasingly viewed as a continuum between shallow and deep quiescence, reflecting different potentials to proliferate. The depth of quiescence is altered in a range of diseases and during aging. Here, we leveraged genome-scale metabolic modeling (GEM) to define the metabolic and epigenetic changes that take place with quiescence deepening. We discovered contrasting changes in lipid catabolism and anabolism and diverging trends in histone methylation and acetylation. We then built a multi-cell type machine learning model that accurately predicts quiescence depth in diverse biological contexts. Using both machine learning and genome-scale flux simulations, we performed high-throughput screening of chemical and genetic modulators of quiescence and identified novel small molecule and genetic modulators with relevance to cancer and aging.
RESUMO
The acute traumatic or surgical loss of skeletal muscle, known as volumetric muscle loss (VML), is a devastating type of injury that results in exacerbated and persistent inflammation followed by fibrosis. The mechanisms that mediate the magnitude and duration of the inflammatory response and ensuing fibrosis after VML remain understudied, and as such, the development of regenerative therapies has been limited. To address this need, we profiled how lipid mediators, which are potent regulators of the immune response after injury, varied with VML injuries that heal or result in fibrosis. We observed that non-healing VML injuries displayed increased pro-inflammatory eicosanoids and a lack of pro-resolving lipid mediators. Treatment of VML with a pro-resolving lipid mediator synthesized from docosahexaenoic acid, called Maresin 1, ameliorated fibrosis through reduction of neutrophils and macrophages and enhanced recovery of muscle strength. These results expand our knowledge of the dysregulated immune response that develops after VML and identify a novel immuno-regenerative therapeutic modality in Maresin 1.
Assuntos
Ácidos Docosa-Hexaenoicos , Doenças Musculares , Humanos , Músculo Esquelético/fisiologia , Doenças Musculares/patologia , FibroseRESUMO
Genome-scale metabolic models (GEMs) are powerful tools for understanding metabolism from a systems-level perspective. However, GEMs in their most basic form fail to account for cellular regulation. A diverse set of mechanisms regulate cellular metabolism, enabling organisms to respond to a wide range of conditions. This limitation of GEMs has prompted the development of new methods to integrate regulatory mechanisms, thereby enhancing the predictive capabilities and broadening the scope of GEMs. Here, we cover integrative models encompassing six types of regulatory mechanisms: transcriptional regulatory networks (TRNs), post-translational modifications (PTMs), epigenetics, protein-protein interactions and protein stability (PPIs/PS), allostery, and signaling networks. We discuss 22 integrative GEM modeling methods and how these have been used to simulate metabolic regulation during normal and pathological conditions. While these advances have been remarkable, there remains a need for comprehensive and widespread integration of regulatory constraints into GEMs. We conclude by discussing challenges in constructing GEMs with regulation and highlight areas that need to be addressed for the successful modeling of metabolic regulation. Next-generation integrative GEMs that incorporate multiple regulatory mechanisms and their crosstalk will be invaluable for discovering cell-type and disease-specific metabolic control mechanisms.