Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Gen Virol ; 97(1): 185-195, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26555192

RESUMO

Cytomegalovirus (CMV) is a ubiquitous virus, causing the most common congenital infection in humans, yet a vaccine against this virus is not available. Experimental studies of immunity against CMV in animal models of infection, such as the infection of mice with mouse CMV (MCMV), have relied mainly on parenteral infection protocols, although the virus naturally transmits by mucosal routes via body fluids. To characterize the biology of infections by mucosal routes, we compared the kinetics of virus replication, latent viral load and CD8 T-cell responses in lymphoid organs upon experimental intranasal (targeting the respiratory tract) and intragastric (targeting the digestive tract) infection with systemic intraperitoneal infection of two unrelated mouse strains. We observed that intranasal infection induced robust and long-term virus replication in the lungs and salivary glands but limited replication in the spleen. CD8 T-cell responses were somewhat weaker than upon intraperitoneal infection but showed similar kinetic profiles and phenotypes of antigen-specific cells. In contrast, intragastric infection resulted in abortive or poor virus replication in all tested organs and poor T-cell responses to the virus, especially at late times after infection. Consistent with the T-cell kinetics, the MCMV latent load was high in the lungs but low in the spleen of intranasally infected mice and lowest in all tested organs upon intragastric infection. In conclusion, we showed that intranasal but not intragastric infection of mice with MCMV represents a robust model to study the short- and long-term biology of CMV infection by a mucosal route.


Assuntos
Imunidade nas Mucosas , Muromegalovirus/imunologia , Muromegalovirus/fisiologia , Estruturas Animais/virologia , Animais , Linfócitos T CD8-Positivos/imunologia , Feminino , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Modelos Animais , Carga Viral , Latência Viral , Replicação Viral
2.
PLoS Pathog ; 8(12): e1003062, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23271968

RESUMO

The inhibition of death-receptor apoptosis is a conserved viral function. The murine cytomegalovirus (MCMV) gene M36 is a sequence and functional homologue of the human cytomegalovirus gene UL36, and it encodes an inhibitor of apoptosis that binds to caspase-8, blocks downstream signaling and thus contributes to viral fitness in macrophages and in vivo. Here we show a direct link between the inability of mutants lacking the M36 gene (ΔM36) to inhibit apoptosis, poor viral growth in macrophage cell cultures and viral in vivo fitness and virulence. ΔM36 grew poorly in RAG1 knockout mice and in RAG/IL-2-receptor common gamma chain double knockout mice (RAGγC(-/-)), but the depletion of macrophages in either mouse strain rescued the growth of ΔM36 to almost wild-type levels. This was consistent with the observation that activated macrophages were sufficient to impair ΔM36 growth in vitro. Namely, spiking fibroblast cell cultures with activated macrophages had a suppressive effect on ΔM36 growth, which could be reverted by z-VAD-fmk, a chemical apoptosis inhibitor. TNFα from activated macrophages synergized with IFNγ in target cells to inhibit ΔM36 growth. Hence, our data show that poor ΔM36 growth in macrophages does not reflect a defect in tropism, but rather a defect in the suppression of antiviral mediators secreted by macrophages. To the best of our knowledge, this shows for the first time an immune evasion mechanism that protects MCMV selectively from the antiviral activity of macrophages, and thus critically contributes to viral pathogenicity in the immunocompromised host devoid of the adaptive immune system.


Assuntos
Imunidade Adaptativa , Imunodeficiência de Variável Comum/imunologia , Infecções por Herpesviridae/imunologia , Macrófagos/imunologia , Muromegalovirus/imunologia , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Linhagem Celular , Imunodeficiência de Variável Comum/genética , Imunodeficiência de Variável Comum/patologia , Imunodeficiência de Variável Comum/virologia , Inibidores de Cisteína Proteinase/farmacologia , Fibroblastos/imunologia , Fibroblastos/patologia , Fibroblastos/virologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/patologia , Humanos , Interferon gama/genética , Interferon gama/imunologia , Macrófagos/patologia , Macrófagos/virologia , Camundongos , Camundongos Knockout , Muromegalovirus/genética , Proteínas Virais/genética , Proteínas Virais/imunologia
3.
Sci Data ; 11(1): 501, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750048

RESUMO

The EU General Data Protection Regulation (GDPR) requirements have prompted a shift from centralised controlled access genome-phenome archives to federated models for sharing sensitive human data. In a data-sharing federation, a central node facilitates data discovery; meanwhile, distributed nodes are responsible for handling data access requests, concluding agreements with data users and providing secure access to the data. Research institutions that want to become part of such federations often lack the resources to set up the required controlled access processes. The DS-PACK tool assembly is a reusable, open-source middleware solution that semi-automates controlled access processes end-to-end, from data submission to access. Data protection principles are engraved into all components of the DS-PACK assembly. DS-PACK centralises access control management and distributes access control enforcement with support for data access via cloud-based applications. DS-PACK is in production use at the ELIXIR Luxembourg data hosting platform, combined with an operational model including legal facilitation and data stewardship.


Assuntos
Disseminação de Informação , Humanos , Acesso à Informação , Segurança Computacional , Software
4.
Lab Invest ; 92(1): 125-34, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21968812

RESUMO

Well-established differences in Coxsackievirus B3 (CVB3) elimination in resistant C57BL/6 and permissive A.SW/SnJ mice provide suitable models for studying the significance of the link between mitochondrial respiratory chain (RC), antioxidative stress components and mitochondrion-related apoptosis in the context of myocardial virus elimination. Distinct myocardial CVB3 titer in C57BL/6 (2.5 ± 1.4 × 10(4) plaque-forming units (p.f.u.)/g tissue) and A.SW/SnJ mice (1.4 ± 0.8 × 10(7) p.f.u./g) were associated with differences in the cardiac mitochondrial function 8 days post infection (p.i.). Infected C57BL/6 mouse hearts disclosed increased complex I (CI) and CIII activity, but restricted CII and normal CIV activity of RC. Reduced expression of the antioxidative catalase was accompanied by elevated lipid peroxidation (LPO), indicating oxidative stress. Intrinsic apoptosis was activated demonstrated by elevated levels of Bax, Bcl-2, caspase 3 and DNA degradation. In contrast, all myocardial RC complex activities were restricted in CVB3-infected A.SW/SnJ mice. The antioxidative system provided sufficient protection against oxidative stress shown by an elevated catalase expression and unaltered LPO. Bax and Bcl-2 levels were unchanged in CVB3-infected A.SW/SnJ mice, while caspase 3 was moderately increased but no DNA degradation was detectable. Correlation analyses including data from the two mouse strains revealed that reduced CVB3 titer correlated with increased CI and CIII activity, oxidative stress as well as active apoptosis during acute myocarditis (MC). C57BL/6 mice completely eliminated CVB3 and inflammation and normalized all intracellular parameters, while A.SW/SnJ mice showed permanently restricted CI activity in chronic MC 90 days p.i., at which time the replicating virus was no longer detectable but immunological processes were still active. Consequently, the regulation of energy metabolism appears crucial for an effective virus elimination and may be of prognostic and therapeutic significance for patients with virus-induced MC.


Assuntos
Infecções por Coxsackievirus/imunologia , Transporte de Elétrons/fisiologia , Enterovirus Humano B , Mitocôndrias Cardíacas/fisiologia , Miocardite/imunologia , Animais , Apoptose , Resistência à Doença , Complexo I de Transporte de Elétrons/fisiologia , Coração/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Carga Viral
5.
Cell Physiol Biochem ; 27(2): 121-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21325829

RESUMO

BACKGROUND/AIMS: The adenine nucleotide translocase (ANT) exchanges ATP and ADP over the inner mitochondrial membrane, supplying the cells with energy. Interestingly, myocardial ANT1 overexpression preserves cardiac structure and function under pathophysiological conditions. To ascertain whether the contractile system is directly affected by increased ANT1 expression, we analyzed cell morphology, contraction and relaxation parameters of ANT1 transgenic (ANT1-TG) cardiomyocytes, myofibrillar protein expression, and Ca(2+) handling in ANT1-TG rat hearts. RESULTS: ANT1-TG cardiomyoycytes displayed an elevation in cell volume (52.6 ± 12.0%; p<0.0001) in comparison to wildtype (WT) cells. Concurrently, contractile function in ANT1-TG cells was significantly increased, measured by a decline in time to peak contraction (TTP) and RT50, the time from peak contraction to 50% relaxation, during stimulation with 0.5, 1, and 2 Hz. Quantification of myofibrillar proteins exhibited a marked increase in total cardiac myosin heavy chain (51.8 ± 12.8%) (p<0.03), beta myosin heavy chain (22.9 ± 5.0%; p<0.03), actin (23.8 ± 8.8%; p<0.05), and troponin I (51.5 ± 13.7%; p<0.01). Regarding intracellular Ca(2+) handling, ANT1-TGs revealed a significant elevation in sarcoplasmic reticulum (SR) Ca(2+) ATPase (SERCA2a) protein level (22.2 ± 4.7%; p<0.01) associated with increased Ca(2+) uptake into the SR (34%; p<0.01). Moreover, the plasmalemmal Ca(2+) ATPase (PMCA) indicated advanced protein expression (23.8 ± 4.8%; p<0.01), whereas the protein amount of the Na(+)/Ca(2+) exchanger was not altered in ANT1 overexpressing hearts. CONCLUSION: These data reveal a close association of elevated mitochondrial ATP/ADP transportation via ANT1 with increased contractile function. Furthermore, the ANT1-TGs exhibit an elevation in SR Ca(2+) transport that contributes to increased cardiac work, which may protect the heart under pathophysiological conditions.


Assuntos
Translocador 1 do Nucleotídeo Adenina/metabolismo , Miócitos Cardíacos/fisiologia , Actinas/metabolismo , Translocador 1 do Nucleotídeo Adenina/genética , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Tamanho Celular , Células Cultivadas , Masculino , Mitocôndrias/metabolismo , Contração Muscular/fisiologia , Miócitos Cardíacos/metabolismo , Miosinas/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Troponina I/metabolismo
6.
BMC Cell Biol ; 11: 28, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20406461

RESUMO

BACKGROUND: Pelota (PELO) is an evolutionary conserved protein, which has been reported to be involved in the regulation of cell proliferation and stem cell self-renewal. Recent studies revealed the essential role of PELO in the No-Go mRNA decay, by which mRNA with translational stall are endonucleotically cleaved and degraded. Further, PELO-deficient mice die early during gastrulation due to defects in cell proliferation and/or differentiation. RESULTS: We show here that PELO is associated with actin microfilaments of mammalian cells. Overexpression of human PELO in Hep2G cells had prominent effect on cell growth, cytoskeleton organization and cell spreading. To find proteins interacting with PELO, full-length human PELO cDNA was used as a bait in a yeast two-hybrid screening assay. Partial sequences of HAX1, EIF3G and SRPX protein were identified as PELO-interacting partners from the screening. The interactions between PELO and HAX1, EIF3G and SRPX were confirmed in vitro by GST pull-down assays and in vivo by co-immunoprecipitation. Furthermore, the PELO interaction domain was mapped to residues 268-385 containing the c-terminal and acidic tail domain. By bimolecular fluorescence complementation assay (BiFC), we found that protein complexes resulting from the interactions between PELO and either HAX1, EIF3G or SRPX were mainly localized to cytoskeletal filaments. CONCLUSION: We could show that PELO is subcellularly localized at the actin cytoskeleton, interacts with HAX1, EIF3G and SRPX proteins and that this interaction occurs at the cytoskeleton. Binding of PELO to cytoskeleton-associated proteins may facilitate PELO to detect and degrade aberrant mRNAs, at which the ribosome is stalled during translation.


Assuntos
Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Citoesqueleto/metabolismo , Endonucleases , Células HeLa , Humanos , Imunoprecipitação , Proteínas Nucleares , Técnicas do Sistema de Duplo-Híbrido
7.
J Card Fail ; 16(2): 157-63, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20142028

RESUMO

BACKGROUND: Angiotensin-converting enzyme (ACE) 2 is a novel homologue of ACE. It metabolizes angiotensin (Ang)II to Ang-(1-7). This study aims to investigate the diagnostic and prognostic potency of circulating ACE2 activity in patients with heart failure (HF) from Chagas' disease (CD). METHODS AND RESULTS: Blood samples were obtained from 111 CD patients and 40 age- and gender-matched healthy subjects. The CD patients were further subdivided according to their New York Heart Association classification. ACE2 activity was significantly increased in CD patients with HF, but not in patients without systolic dysfunction. Moreover, plasma ACE2 activity was significantly correlated with their clinical severity and echocardiographic parameters. Importantly, the potency of circulating ACE2 activity in CD patients was equally potent as that of B-type natriuretic peptide to predict cardiac death and heart transplant. Most importantly, patients with both parameters elevated were on a 5-fold higher risk to reach an endpoint than patients with increase in only 1 of the 2 parameters. CONCLUSIONS: Determination of ACE2 activity may provide a new and important diagnostic and prognostic marker for patients with CD. ACE2 activity and BNP concentration have additive predictive value and may be used in combination to offer a new dimension of prediction in HF.


Assuntos
Doença de Chagas/sangue , Doença de Chagas/diagnóstico , Peptídeo Natriurético Encefálico/sangue , Peptidil Dipeptidase A/sangue , Enzima de Conversão de Angiotensina 2 , Biomarcadores/sangue , Doença de Chagas/enzimologia , Doença de Chagas/mortalidade , Estudos de Coortes , Ativação Enzimática/fisiologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Estudos Prospectivos
8.
Basic Res Cardiol ; 104(3): 247-57, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19190956

RESUMO

The disturbance of myocardial energy metabolism has been discussed as contributing to the progression of heart failure. Little however is known about the cardiac mitochondrial/cytosolic energy transfer in murine and human inflammatory heart disease. We examined the myocardial creatine kinase (CK) system, which connects mitochondrial ATP-producing and cytosolic ATP-consuming processes and is thus of central importance to the cellular energy homeostasis. The time course of expression and enzymatic activity of mitochondrial (mtCK) and cytosolic CK (cytCK) was investigated in Coxsackievirus B3 (CVB3)-infected SWR mice, which are susceptible to the development of chronic myocarditis. In addition, cytCK activity and isoform expression were analyzed in biopsies from patients with chronic inflammatory heart disease (n = 22). Cardiac CVB3 titer in CVB3-infected mice reached its maximum at 4 days post-infection (pi) and became undetectable at 28 days pi; cardiac inflammation cumulated 14 days pi but persisted through the 28-day survey. MtCK enzymatic activity was reduced by 40% without a concurrent decrease in mtCK protein during early and acute MC. Impaired mtCK activity was correlated with virus replication and increased level of interleukine 1beta (IL-1beta), tumor necrosis factor alpha (TNFalpha), and elevated catalase expression, a marker for intracellular oxidative stress. A reduction in cytCK activity of 48% was observed at day 14 pi and persisted to day 28 pi. This restriction was caused by a decrease in cytCK subunit expression but also by direct inhibition of specific cytCK activity. CytCK activity and expression were also reduced in myocardial biopsies from enterovirus genome-negative patients with inflammatory heart disease. The decrease in cytCK activity correlated with the number of infiltrating macrophages. Thus, viral infection and myocardial inflammation significantly influence the myocardial CK system via restriction of specific CK activity and down-regulation of cytCK protein. These changes may contribute to the progression of chronic inflammatory heart disease and malfunction of the heart.


Assuntos
Creatina Quinase Forma MB/metabolismo , Creatina Quinase Mitocondrial/metabolismo , Citoplasma/enzimologia , Miocardite/enzimologia , Adulto , Animais , Western Blotting , Infecções por Coxsackievirus/enzimologia , Enterovirus Humano B , Feminino , Humanos , Imuno-Histoquímica , Isoenzimas/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Miocardite/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Exp Physiol ; 94(2): 220-7, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18945756

RESUMO

Mitochondrial dysfunction is implicated in the pathogenesis of diabetic cardiomyopathy, a common complication of diabetes. Adenosine nucleotide translocase (ANT) translocates ADP/ATP across the inner mitochondrial membrane. Our study aimed to test the hypothesis that overexpression of ANT1 in cardiomyocytes has cardioprotective effects in diabetic cardiomyopathy induced by streptozotocin (STZ). Mice specifically overexpressing murine ANT1 in the heart were generated using alpha-myosin heavy chain promoter. Expression of ANT1 mRNA and protein in hearts was characterized by real-time polymerase chain reaction and Western blot analysis. Five- to 6-month-old male transgenic mice and their age-matched wild-type littermates were subjected to type 1 diabetes induced by STZ. Six weeks later, haemodynamic measurement was performed to assess cardiac function. Ventricular mRNA expression of atrial natriuretic peptide, a molecular marker of heart failure, was characterized by RNase-protection assay. Both ANT1 mRNA and ANT1 protein were specifically overexpressed in the heart of transgenic mice. Heart weight was decreased and cardiac function was dramatically impaired in wild-type mice 6 weeks after induction of diabetes, but ANT1 overexpression prevented these significant changes. The mRNA expression level of atrial natriuretic peptide confirmed the haemodynamic findings, being upregulated in wild-type mice receiving STZ, but showing no statistical differences in ANT1 transgenic mice. Cardiomyocyte-restricted overexpression of ANT1 prevents the development of diabetic cardiomyopathy; therefore, accelerated ADP/ATP exchange could be a new promising target to treat diabetic cardiomyopathy.


Assuntos
Translocador 1 do Nucleotídeo Adenina/metabolismo , Cardiomiopatias/prevenção & controle , Complicações do Diabetes/prevenção & controle , Miocárdio/metabolismo , Translocador 1 do Nucleotídeo Adenina/genética , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cardiomiopatias/metabolismo , Complicações do Diabetes/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/complicações , Modelos Animais de Doenças , Hiperglicemia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , RNA Mensageiro/metabolismo , Estreptozocina
10.
Circulation ; 115(3): 333-44, 2007 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-17210842

RESUMO

BACKGROUND: Strong evidence suggests that mitochondrial malfunction, which leads to disturbed energy metabolism and stimulated apoptosis, is a linchpin in the induction and manifestation of cardiac failure. An adequate exchange of ATP and ADP over the inner mitochondrial membrane by the adenine nucleotide translocase (ANT) is thereby essential to guarantee the cellular energy supply. METHODS AND RESULTS: To explore the effect of an ameliorated mitochondrial ATP/ADP transportation on cardiac dysfunction, we generated transgenic rats overexpressing ANT1 in the heart (ANT rats) and crossed them with renin-overexpressing rats (REN rats) suffering from hypertension-induced cardiac insufficiency. Cardiac-specific ANT1 overexpression resulted in a higher ATP/ADP transportation and elevated activities of respiratory chain complexes. Increased ANT activity in double-transgenic (ANT/REN) animals did not influence excessive hypertension seen in REN rats. Hypertension-induced cardiac hypertrophy in the REN rats was prevented by parallel ANT1 overexpression, however, and left ventricular function remarkably improved. The ANT1 overexpression led to a reduction in fibrosis and an improvement in cardiac tissue architecture. Consequently, the survival rate of ANT/REN rats was enhanced. Further investigations into the cardioprotective mechanism of ANT1 overexpression revealed improved mitochondrial structure and function and significantly reduced apoptosis in ANT/REN rats, shown by lowered cytosolic/mitochondrial cytochrome c ratio, reduced caspase 3 level, and prevented DNA degradation. CONCLUSIONS: Myocardial ANT1 overexpression protects against hypertension-induced cardiac pathology. Thus, the improvement in mitochondrial function may be a basic principle for new strategies in treating heart disease.


Assuntos
Translocador 1 do Nucleotídeo Adenina/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Cardiopatias/prevenção & controle , Hipertensão/complicações , Mitocôndrias Cardíacas/metabolismo , Translocases Mitocondriais de ADP e ATP/metabolismo , Translocador 1 do Nucleotídeo Adenina/genética , Animais , Animais Geneticamente Modificados , Apoptose , Transporte Biológico/fisiologia , Caspase 3/metabolismo , Citocromos c/metabolismo , Dano ao DNA , Regulação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Cardiopatias/etiologia , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Hipertensão/fisiopatologia , Translocases Mitocondriais de ADP e ATP/genética , Ratos , Ratos Sprague-Dawley , Renina/genética , Renina/metabolismo , Taxa de Sobrevida
11.
Eur J Pharmacol ; 590(1-3): 276-80, 2008 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-18571157

RESUMO

Angiotensin-(1-7) is associated with beneficial effects in cardiovascular diseases. In this study, we determined the effect of AVE0991, a nonpeptide angiotensin-(1-7) receptor agonist, on cardiac function in an animal model of diabetes mellitus type I. Diabetes was induced in Sprague-Dawley rats by a single injection of streptozotocin (70 mg/kg). Diabetic and non-diabetic animals were fed with AVE0991 (20 mg/kg per day) or control chow. Normoglycemic control chow- or AVE0991-fed rats served as controls (n=10/group). After five weeks, metabolic cage experiments were performed to assess metabolic parameters. Six weeks after induction of diabetes, cardiac function was monitored using a Millar-tip catheter system. AVE0991 had no effect on any of the investigated hemodynamic parameters under normoglycemic conditions. Hyperglycemia was comparable in diabetic animals with or without AVE0991 treatment. Diabetic control rats suffered from severe systolic dysfunction, indicated by a significant decrease in heart rate, left ventricular systolic pressure, systolic blood pressure and an impairment of left ventricular contractility. Administration of AVE0991 clearly rescued cardiac function under diabetic conditions as indicated by a normalisation of blood pressure and contractility parameters. Our data demonstrates a dominant beneficial impact of AVE0991 on the diabetic heart, implying a cardioprotective role for angiotensin-(1-7) under hyperglycemic conditions and thus pointing to new therapeutic strategies using angiotensin-(1-7) agonists to treat cardiovascular complications in diabetes mellitus.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Coração/efeitos dos fármacos , Imidazóis/farmacologia , Proteínas Proto-Oncogênicas/agonistas , Receptores Acoplados a Proteínas G/agonistas , Animais , Pressão Sanguínea/efeitos dos fármacos , Coração/fisiopatologia , Masculino , Óxido Nítrico/biossíntese , Proto-Oncogene Mas , Ratos , Ratos Sprague-Dawley , Estreptozocina , Função Ventricular Esquerda/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA