Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Phys Rev Lett ; 132(12): 123202, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38579236

RESUMO

We studied strong-field multiphoton ionization of 1-iodo-2-methylbutane enantiomers with 395 nm circularly polarized laser pulses experimentally and theoretically. For randomly oriented molecules, we observe spin polarization up to about 15%, which is independent of the molecular enantiomer. Our experimental findings are explained theoretically as an intricate interplay between three contributions from HOMO, HOMO-1, and HOMO-2, which are formed of 5p-electrons of the iodine atom. For uniaxially oriented molecules, our theory demonstrates even larger spin polarization. Moreover, we predict a sizable enantiosensitive photoelectron circular dichroism of about 10%, which is different for different spin states of photoelectrons.

2.
Phys Chem Chem Phys ; 24(44): 27121-27127, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36342321

RESUMO

During the last decade, X-ray free-electron lasers (XFELs) have enabled the study of light-matter interaction under extreme conditions. Atoms which are subject to XFEL radiation are charged by a complex interplay of (several subsequent) photoionization events and electronic decay processes within a few femtoseconds. The interaction with molecules is even more intriguing, since intricate nuclear dynamics occur as the molecules start to dissociate during the charge-up process. Here, we demonstrate that by analyzing photoelectron angular emission distributions and kinetic energy release of charge states of ionic molecular fragments, we can obtain a detailed understanding of the charge-up and fragmentation dynamics. Our novel approach allows for gathering such information without the need of complex ab initio modeling. As an example, we provide a detailed view on the processes happening on a femtosecond time scale in oxygen molecules exposed to intense XFEL pulses.

3.
Phys Rev Lett ; 127(27): 273201, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35061406

RESUMO

We present experimental data on the nonadiabatic strong field ionization of atomic hydrogen using elliptically polarized femtosecond laser pulses at a central wavelength of 390 nm. Our measured results are in very good agreement with a numerical solution of the time-dependent Schrödinger equation (TDSE). Experiment and TDSE show four above-threshold ionization peaks in the electron's energy spectrum. The most probable emission angle (also known as "attoclock offset angle" or "streaking angle") is found to increase with energy, a trend that is opposite to standard predictions based on Coulomb interaction with the ion. We show that this increase of deflection angle can be explained by a model that includes nonadiabatic corrections of the initial momentum distribution at the tunnel exit and nonadiabatic corrections of the tunnel exit position itself.

4.
Phys Rev Lett ; 126(5): 053202, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33605768

RESUMO

Strong-field ionization of atoms by circularly polarized femtosecond laser pulses produces a donut-shaped electron momentum distribution. Within the dipole approximation this distribution is symmetric with respect to the polarization plane. The magnetic component of the light field is known to shift this distribution forward. Here, we show that this magnetic nondipole effect is not the only nondipole effect in strong-field ionization. We find that an electric nondipole effect arises that is due to the position dependence of the electric field and which can be understood in analogy to the Doppler effect. This electric nondipole effect manifests as an increase of the radius of the donut-shaped photoelectron momentum distribution for forward-directed momenta and as a decrease of this radius for backwards-directed electrons. We present experimental data showing this fingerprint of the electric nondipole effect and compare our findings with a classical model and quantum calculations.

5.
Phys Rev Lett ; 126(8): 083201, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33709766

RESUMO

We investigate the differential ionization probability of chiral molecules in the strong-field regime as a function of the helicity of the incident light. To this end, we analyze the fourfold ionization of bromochlorofluoromethane (CHBrClF) with subsequent fragmentation into four charged fragments and different dissociation channels of the singly ionized methyloxirane. By resolving for the molecular orientation, we show that the photoion circular dichroism signal strength is increased by 2 orders of magnitude.

6.
Phys Rev Lett ; 127(10): 103201, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34533326

RESUMO

We report on a joint experimental and theoretical study of photoelectron circular dichroism (PECD) in methyloxirane. By detecting O 1s photoelectrons in coincidence with fragment ions, we deduce the molecule's orientation and photoelectron emission direction in the laboratory frame. Thereby, we retrieve a fourfold differential PECD clearly beyond 50%. This strong chiral asymmetry is reproduced by ab initio electronic structure calculations. Providing such a pronounced contrast makes PECD of fixed-in-space chiral molecules an even more sensitive tool for chiral recognition in the gas phase.

7.
Phys Rev Lett ; 121(8): 083002, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30192586

RESUMO

We report on a direct method to measure the interatomic potential energy curve of diatomic systems. A cold target recoil ion momentum spectroscopy reaction microscope was used to measure the squares of the vibrational wave functions of H_{2}, He_{2}, Ne_{2}, and Ar_{2}. The Schrödinger equation relates the curvature of the wave function to the potential V(R) and therefore offers a simple but elegant way to extract the shape of the potential.

8.
Phys Rev Lett ; 120(4): 043202, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29437459

RESUMO

The spin polarization of electrons from multiphoton ionization of Xe by 395 nm circularly polarized laser pulses at 6×10^{13} W/cm^{2} has been measured. At this photon energy of 3.14 eV the above-threshold ionization peaks connected to Xe^{+} ions in the ground state (J=3/2, ionization potential I_{p}=12.1 eV) and the first excited state (J=1/2, I_{p}=13.4 eV) are clearly separated in the electron energy distribution. These two combs of above-threshold ionization peaks show opposite spin polarizations. The magnitude of the spin polarization is a factor of 2 higher for the J=1/2 than for the J=3/2 final ionic state. In turn, the data show that the ionization probability is strongly dependent on the sign of the magnetic quantum number.

9.
Phys Rev Lett ; 120(22): 223204, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29906162

RESUMO

We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the subcycle dynamics of the recollision process. Our Letter reveals a general physical picture for recollision impact double ionization with elliptical polarization and demonstrates the possibility of ultrafast control of the recollision dynamics.

10.
Phys Rev Lett ; 121(24): 243002, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30608769

RESUMO

We suggest that low-energy electrons, released by resonant decay processes, experience substantial scattering on the electron density of excited electrons, which remain a spectator during the decay. As a result, the angular emission distribution is altered significantly. This effect is expected to be a common feature of low-energy secondary electron emission. In this Letter, we exemplify our idea by examining the spectator resonant interatomic Coulombic decay of Ne dimers. Our theoretical predictions are confirmed by a corresponding coincidence experiment.

11.
Phys Rev Lett ; 121(17): 173003, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30411931

RESUMO

We report on a kinematically complete measurement of double ionization of helium by a single 1100 eV circularly polarized photon. By exploiting dipole selection rules in the two-electron continuum state, we observed the angular emission pattern of electrons originating from a pure quadrupole transition. Our fully differential experimental data and companion ab initio nonperturbative theory show the separation of dipole and quadrupole contributions to photo-double-ionization and provide new insight into the nature of the quasifree mechanism.

12.
Phys Rev Lett ; 121(16): 163202, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30387676

RESUMO

We report on the nonadiabatic offset of the initial electron momentum distribution in the plane of polarization upon single ionization of argon by strong field tunneling and show how to experimentally control the degree of nonadiabaticity. Two-color counter- and corotating fields (390 and 780 nm) are compared to show that the nonadiabatic offset strongly depends on the temporal evolution of the laser electric field. We introduce a simple method for the direct access to the nonadiabatic offset using two-color counter- and corotating fields. Further, for a single-color circularly polarized field at 780 nm, we show that the radius of the experimentally observed donutlike distribution increases for increasing momentum in the light propagation direction. Our observed initial momentum offsets are well reproduced by the strong-field approximation. A mechanistic picture is introduced that links the measured nonadiabatic offset to the magnetic quantum number of virtually populated intermediate states.

13.
Phys Rev Lett ; 117(13): 133202, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27715093

RESUMO

We report on nonsequential double ionization of Ar by a laser pulse consisting of two counterrotating circularly polarized fields (390 and 780 nm). The double-ionization probability depends strongly on the relative intensity of the two fields and shows a kneelike structure as a function of intensity. We conclude that double ionization is driven by a beam of nearly monoenergetic recolliding electrons, which can be controlled in intensity and energy by the field parameters. The electron momentum distributions show the recolliding electron as well as a second electron which escapes from an intermediate excited state of Ar^{+}.

14.
Struct Dyn ; 10(5): 054302, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37799711

RESUMO

Dynamical response of water exposed to x-rays is of utmost importance in a wealth of science areas. We exposed isolated water isotopologues to short x-ray pulses from a free-electron laser and detected momenta of all produced ions in coincidence. By combining experimental results and theoretical modeling, we identify significant structural dynamics with characteristic isotope effects in H2O2+, D2O2+, and HDO2+, such as asymmetric bond elongation and bond-angle opening, leading to two-body or three-body fragmentation on a timescale of a few femtoseconds. A method to disentangle the sequences of events taking place upon the consecutive absorption of two x-ray photons is described. The obtained deep look into structural properties and dynamics of dissociating water isotopologues provides essential insights into the underlying mechanisms.

15.
Nat Commun ; 12(1): 1697, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727546

RESUMO

When a very strong light field is applied to a molecule an electron can be ejected by tunneling. In order to quantify the time-resolved dynamics of this ionization process, the concept of the Wigner time delay can be used. The properties of this process can depend on the tunneling direction relative to the molecular axis. Here, we show experimental and theoretical data on the Wigner time delay for tunnel ionization of H2 molecules and demonstrate its dependence on the emission direction of the electron with respect to the molecular axis. We find, that the observed changes in the Wigner time delay can be quantitatively explained by elongated/shortened travel paths of the emitted electrons, which occur due to spatial shifts of the electrons' birth positions after tunneling. Our work provides therefore an intuitive perspective towards the Wigner time delay in strong-field ionization.

16.
Sci Adv ; 5(3): eaau7923, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30873429

RESUMO

Chirality is omnipresent in living nature. On the single molecule level, the response of a chiral species to a chiral probe depends on their respective handedness. A prominent example is the difference in the interaction of a chiral molecule with left or right circularly polarized light. In the present study, we show by Coulomb explosion imaging that circularly polarized light can also induce a chiral fragmentation of a planar and thus achiral molecule. The observed enantiomer strongly depends on the orientation of the molecule with respect to the light propagation direction and the helicity of the ionizing light. This finding might trigger new approaches to improve laser-driven enantioselective chemical synthesis.

17.
J Neurosci Res ; 86(12): 2774-83, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18438945

RESUMO

Neurotrophins, including brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and neurotrophin-3 (NT-3), have repeatedly been shown to be involved in the pathophysiology of Alzheimer's disease (AD). Recent studies have claimed that these neurotrophic factors are important tools for therapeutic intervention in neurodegenerative diseases. So far, little is known about the age- and disease-modulated time course of cerebral neurotrophins. Therefore, we have studied protein concentrations of BDNF, NGF, and NT-3 in different brain areas and sciatic nerve, a neurotrophin-transporting peripheral nerve, in a well-characterized AD model of amyloid precursor protein-overexpressing rodents (APP23 mice) at the ages of 5.0, 10.5, and 20.0 months. In APP23 mice, there was a significant increase of BDNF and NGF in the frontal and occipital cortices (for BDNF also in the striatum) of old 20.0-month-old mice (with respect to median values up to 8.2-fold), which was highly correlated with amyloid concentrations of these brain areas. Median values of NGF and NT-3 showed up to a 6.0-fold age-dependent increase in the septum that was not detectable in APP23 mice. Hippocampus, olfactory bulb, and cerebellum (except NT-3) did not show substantial age- or genotype-related regulation of neurotrophins. In the sciatic nerve, BDNF and NGF levels are increased in5-month-old APP23 mice and decrease with age to control levels. In conclusion, APP23 mice show a genotype-dependent increase of cortical BDNF and NGF that is highly correlated with amyloid concentrations and may reflect an amyloid-related glia-derived neurotrophin secretion or an altered axonal transport of these neurotrophic factors.


Assuntos
Envelhecimento/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cérebro/metabolismo , Fator de Crescimento Neural/metabolismo , Neurotrofina 3/metabolismo , Fatores Etários , Envelhecimento/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/análise , Fator Neurotrófico Derivado do Encéfalo/genética , Cérebro/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator de Crescimento Neural/análise , Fator de Crescimento Neural/genética , Neurotrofina 3/análise , Neurotrofina 3/genética , Fatores de Tempo
18.
Science ; 350(6259): 420-3, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26429882

RESUMO

The ground state of quantum systems is characterized by zero-point motion. This motion, in the form of vacuum fluctuations, is generally considered to be an elusive phenomenon that manifests itself only indirectly. Here, we report direct detection of the vacuum fluctuations of electromagnetic radiation in free space. The ground-state electric-field variance is inversely proportional to the four-dimensional space-time volume, which we sampled electro-optically with tightly focused laser pulses lasting a few femtoseconds. Subcycle temporal readout and nonlinear coupling far from resonance provide signals from purely virtual photons without amplification. Our findings enable an extreme time-domain approach to quantum physics, with nondestructive access to the quantum state of light. Operating at multiterahertz frequencies, such techniques might also allow time-resolved studies of intrinsic fluctuations of elementary excitations in condensed matter.

19.
Neuroscience ; 245: 129-35, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23623989

RESUMO

Folate deficiency has been linked to neurodegenerative and stress-related diseases such as stroke, dementia and depression. The role of the neurotrophins nerve growth factor (NGF) and neurotrophin-3 (NT-3) in stress-related disorders and neurodegeneration has garnered increasing attention in recent years. Uracil misincorporation is involved in the neuropsychiatric dysfunction induced by experimental folate deprivation. However, the effects of folate deficiency on the expression of NGF and NT-3 in brain tissue have not yet been investigated. In a 2×2 design, aged mice lacking uracil-DNA N-glycosylase (Ung(-/-)) versus wild-type (Ung(+/+)) controls were subjected to a folate-deficient diet versus a regular diet for three months. Independent of genotype, folate deficiency led to decreased NGF protein levels in the frontal cortex and amygdala. In the hippocampus, NGF levels were increased in UNG(-/-) mice on the normal diet, but not under folate deficiency, while in UNG(+/+) mice, folate deprivation did not affect hippocampal NGF content. NT-3 protein concentrations were neither affected by genotype nor by folate deficiency. Altogether, the results of our study show that folate deficiency affects NGF levels in the frontal cortex, amygdala and hippocampus. The decrease in NGF content in the hippocampus in response to folate deficiency in Ung(-/-) mice may contribute to their phenotype of enhanced anxiety and despair-like behavior as well as to selective hippocampal neurodegeneration.


Assuntos
Tonsila do Cerebelo/metabolismo , Deficiência de Ácido Fólico/metabolismo , Lobo Frontal/metabolismo , Hipocampo/metabolismo , Fator de Crescimento Neural/metabolismo , Estresse Psicológico/metabolismo , Animais , Deficiência de Ácido Fólico/genética , Deficiência de Ácido Fólico/psicologia , Genótipo , Camundongos , Camundongos Knockout , Fator de Crescimento Neural/antagonistas & inibidores , Fator de Crescimento Neural/genética , Estresse Psicológico/genética , Estresse Psicológico/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA