Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am Nat ; 202(6): 767-784, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38033178

RESUMO

AbstractBet hedging consists of life history strategies that buffer against environmental variability by trading off immediate and long-term fitness. Delayed germination in annual plants is a classic example of bet hedging and is often invoked to explain low germination fractions. We examined whether bet hedging explains low and variable germination fractions among 20 populations of the winter annual plant Clarkia xantiana ssp. xantiana that experience substantial variation in reproductive success among years. Leveraging 15 years of demographic monitoring and 3 years of field germination experiments, we assessed the fitness consequences of seed banks and compared optimal germination fractions from a density-independent bet-hedging model to observed germination fractions. We did not find consistent evidence of bet hedging or the expected trade-off between arithmetic and geometric mean fitness, although delayed germination increased long-term fitness in 7 of 20 populations. Optimal germination fractions were two to five times higher than observed germination fractions, and among-population variation in germination fractions was not correlated with risks across the life cycle. Our comprehensive test suggests that bet hedging is not sufficient to explain the observed germination patterns. Understanding variation in germination strategies will likely require integrating bet hedging with complementary forces shaping the evolution of delayed germination.


Assuntos
Germinação , Características de História de Vida , Evolução Biológica , Plantas , Reprodução
2.
Am J Bot ; 108(2): 309-319, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33524185

RESUMO

PREMISE: Whether drought-adaptation mechanisms tend to evolve together, evolve independently, or evolve constrained by genetic architecture is incompletely resolved, particularly for water-relations traits besides gas exchange. We addressed this issue in two subspecies of Clarkia xantiana (Onagraceae), California winter annuals that separated approximately 65,000 years ago and are adapted, partly by differences in flowering time, to native ranges differing in precipitation. METHODS: In these subspecies and in recombinant inbred lines (RILs) from a cross between them, we scored traits related to drought adaptation (timing of seed germination and of flowering, succulence, pressure-volume curve variables) in common environments. RESULTS: The subspecies native to more arid environments (parviflora) exhibited slower seed germination in saturated conditions, earlier flowering, and greater succulence, likely indicating superior drought avoidance, drought escape, and dehydration resistance via water storage. The other subspecies (xantiana) had lower osmotic potential at full turgor and lower water potential at turgor loss, implying superior dehydration tolerance. Genetic correlations among RILs suggest facilitated evolution of some trait combinations and independence of others. Where genetic correlations exist, subspecies differences fell along them, with the exception of differences in succulence and turgor loss point. In that case, subspecies difference overcame genetic correlations, possibly reflecting strong selection and/or antagonistic genetic correlations with other traits. CONCLUSIONS: Clarkia xantiana subspecies' differ in multiple mechanisms of drought adaptation. Genetic architecture generally does not seem to have constrained the evolution of these mechanisms, and it may have facilitated the evolution of some of trait combinations.


Assuntos
Clarkia , Secas , Adaptação Fisiológica , Evolução Biológica , Fenótipo , Água
3.
Am Nat ; 193(6): 786-797, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31094601

RESUMO

Species' geographic distributions have already shifted during the Anthropocene. However, we often do not know what aspects of the environment drive range dynamics, much less which traits mediate organisms' responses to these environmental gradients. Most studies focus on possible climatic limits to species' distributions and have ignored the role of biotic interactions, despite theoretical support for their importance in setting distributional limits. We used field experiments and simulations to estimate contributions of mammalian herbivory to a range boundary in the Californian annual plant Clarkia xantiana ssp. xantiana. A steep gradient of increasing probability of herbivory occurred across the boundary, and a reanalysis of prior transplant experiments revealed that herbivory drove severalfold declines in lifetime fitness at and beyond the boundary. Simulations showed that populations could potentially persist beyond the range margin in the absence of herbivory. Using data from a narrowly sympatric subspecies, Clarkia xantiana parviflora, we also showed that delayed phenology is strongly associated with C. xantiana ssp. xantiana's susceptibility to herbivory and low fitness beyond its border. Overall, our results provide some of the most comprehensive evidence to date of how the interplay of demography, traits, and spatial gradients in species interactions can produce a geographic range limit, and they lend empirical support to recent developments in range limits theory.


Assuntos
Clarkia , Ecossistema , Aptidão Genética , Herbivoria , Lagomorpha , Animais , California , Geografia
4.
Ecography ; 37(12): 1155-1166, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25722536

RESUMO

Hutchinson defined species' realized niche as the set of environmental conditions in which populations can persist in the presence of competitors. In terms of demography, the realized niche corresponds to the environments where the intrinsic growth rate (r) of populations is positive. Observed species occurrences should reflect the realized niche when additional processes like dispersal and local extinction lags do not have overwhelming effects. Despite the foundational nature of these ideas, quantitative assessments of the relationship between range-wide demographic performance and occurrence probability have not been made. This assessment is needed both to improve our conceptual understanding of species' niches and ranges and to develop reliable mechanistic models of species geographic distributions that incorporate demography and species interactions. The objective of this study is to analyse how demographic parameters (intrinsic growth rate r and carrying capacity K) and population density (N) relate to occurrence probability (Pocc ). We hypothesized that these relationships vary with species' competitive ability. Demographic parameters, density, and occurrence probability were estimated for 108 tree species from four temperate forest inventory surveys (Québec, Western US, France and Switzerland). We used published information of shade tolerance as indicators of light competition strategy, assuming that high tolerance denotes high competitive capacity in stable forest environments. Interestingly, relationships between demographic parameters and occurrence probability did not vary substantially across degrees of shade tolerance and regions. Although they were influenced by the uncertainty in the estimation of the demographic parameters, we found that r was generally negatively correlated with Pocc , while N, and for most regions K, was generally positively correlated with Pocc . Thus, in temperate forest trees the regions of highest occurrence probability are those with high densities but slow intrinsic population growth rates. The uncertain relationships between demography and occurrence probability suggests caution when linking species distribution and demographic models.

5.
Ecology ; 93(5): 1036-48, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22764490

RESUMO

Mutualisms are well known to influence individual fitness and the population dynamics of partner species, but little is known about whether they influence species distributions and the location of geographic range limits. Here, we examine the contribution of plant-pollinator interactions to the geographic range limit of the California endemic plant Clarkia xantiana ssp. xantiana. We show that pollinator availability declined from the center to the margin of the geographic range consistently across four years of study. This decline in pollinator availability was caused to a greater extent by variation in the abundance of generalist rather than specialist bee pollinators. Climate data suggest that patterns of precipitation in the current and previous year drove variation in bee abundance because of its effects on cues for bee emergence in the current year and the abundance of floral resources in the previous year. Experimental floral manipulations showed that marginal populations had greater outcross pollen limitation of reproduction, in parallel with the decline in pollinator abundance. Although plants are self-compatible, we found no evidence that autonomous selfing contributes to reproduction, and thus no evidence that it alleviates outcross pollen limitation in marginal populations. Furthermore, we found no association between the distance to the range edge and selfing rate, as estimated from sequence and microsatellite variation, indicating that the mating system has not evolved in response to the pollination environment at the range periphery. Overall, our results suggest that dependence on pollinators for reproduction may be an important constraint limiting range expansion in this system.


Assuntos
Abelhas/fisiologia , Clarkia/fisiologia , Pólen/fisiologia , Polinização/fisiologia , Animais , Demografia , Chuva , Estações do Ano
6.
Evolution ; 73(9): 1746-1758, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31432512

RESUMO

The immediate capacity for adaptation under current environmental conditions is directly proportional to the additive genetic variance for fitness, VA (W). Mean absolute fitness, W¯ , is predicted to change at the rate VA(W)W¯ , according to Fisher's Fundamental Theorem of Natural Selection. Despite ample research evaluating degree of local adaptation, direct assessment of VA (W) and the capacity for ongoing adaptation is exceedingly rare. We estimated VA (W) and W¯ in three pedigreed populations of annual Chamaecrista fasciculata, over three years in the wild. Contrasting with common expectations, we found significant VA (W) in all populations and years, predicting increased mean fitness in subsequent generations (0.83 to 6.12 seeds per individual). Further, we detected two cases predicting "evolutionary rescue," where selection on standing VA (W) was expected to increase fitness of declining populations ( W¯ < 1.0) to levels consistent with population sustainability and growth. Within populations, inter-annual differences in genetic expression of fitness were striking. Significant genotype-by-year interactions reflected modest correlations between breeding values across years, indicating temporally variable selection at the genotypic level that could contribute to maintaining VA (W). By directly estimating VA (W) and total lifetime W¯ , our study presents an experimental approach for studies of adaptive capacity in the wild.


Assuntos
Adaptação Fisiológica/genética , Chamaecrista/genética , Aptidão Genética , Variação Genética , Evolução Biológica , Genética Populacional , Genótipo , Geografia , Modelos Genéticos , Linhagem , Estações do Ano , Sementes , Seleção Genética , Fatores de Tempo
8.
Evolution ; 59(3): 521-31, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15856695

RESUMO

Because the range boundary is the locale beyond which a taxon fails to persist, it provides a unique opportunity for studying the limits on adaptive evolution. Adaptive constraints on range expansion are perplexing in view of widespread ecotypic differentiation by habitat and region within a species' range (regional adaptation) and rapid evolutionary response to novel environments. In this study of two parapatric subspecies, Clarkia xantiana ssp. xantiana and C. x. ssp. parviflora, we compared the fitness of population transplants within their native region, in a non-native region within the native range, and in the non-native range to assess whether range expansion might be limited by a greater intensity of selection on colonists of a new range versus a new region within the range. The combined range of the two subspecies spans a west-to-east gradient of declining precipitation in the Sierra Nevada of California, with ssp. xantiana in the west being replaced by ssp. parviflora in the east. Both subspecies had significantly higher fitness in the native range (range adaptation), whereas regional adaptation was weak and was found only in the predominantly outcrossing ssp. xantiana but was absent in the inbreeding ssp. parvifilora. Because selection intensity on transplants was much stronger in the non-native range relative to non-native regions, there is a larger adaptive barrier to range versus regional expansion. Three of five sequential fitness components accounted for regional and range adaptation, but only one of them, survivorship from germination to flowering, contributed to both. Flower number contributed to regional adaptation in ssp. xantiana and fruit set (number of fruits per flower) to range adaptation. Differential survivorship of the two taxa or regional populations of ssp. xantiana in non-native environments was attributable, in part, to biotic interactions, including competition, herbivory, and pollination. For example, low fruit set in ssp. xantiana in the east was likely due to the absence of its principal specialist bee pollinators in ssp. parviflora's range. Thus, convergence on self-fertilization may be necessary for ssp. xantiana to invade ssp. parviflora's range, but the evolution of outcrossing would not be required for ssp. parviflora to invade ssp. xantiana's range.


Assuntos
Adaptação Biológica , Evolução Biológica , Clarkia/fisiologia , Demografia , California , Clarkia/crescimento & desenvolvimento , Flores/fisiologia , Geografia , Reprodução/fisiologia , Especificidade da Espécie
9.
Evolution ; 69(9): 2249-61, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26257193

RESUMO

Sister taxa with distinct phenotypes often occupy contrasting environments in parapatric ranges, yet we generally do not know whether trait divergence reflects spatially varying selection. We conducted a reciprocal transplant experiment to test whether selection favors "native phenotypes" in two subspecies of Clarkia xantiana (Onagraceae), an annual plant in California. For four quantitative traits that differ between subspecies, we estimated phenotypic selection in subspecies' exclusive ranges and their contact zone in two consecutive years. We predicted that in the arid, pollinator-scarce eastern region, selection favors phenotypes of the native subspecies parviflora: small leaves, slow leaf growth, early flowering, and diminutive flowers. In the wetter, pollinator-rich, western range of subspecies xantiana, we expected selection for opposite phenotypes. We investigated pollinator contributions to selection by comparing naturally pollinated and pollen-supplemented individuals. For reproductive traits and for subspecies xantiana, selection generally matched expectations. The contact zone sometimes showed distinctive selection, and in ssp. parviflora selection sometimes favored nonnative phenotypes. Pollinators influenced selection on flowering time but not on flower size. Little temporal variation in selection occurred, possibly because of plastic trait responses across years. Though there were exceptions and some causes of selection remain obscure, phenotypic differentiation between subspecies appears to reflect spatially variable selection.


Assuntos
Adaptação Biológica , Clarkia/fisiologia , Polinização , California , Clarkia/anatomia & histologia , Clima , Ecossistema , Fenótipo , Reprodução/fisiologia
10.
Evolution ; 58(1): 59-70, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15058719

RESUMO

Both genetic differentiation and phenotypic plasticity might be expected to affect the location of geographic range limits. Co-gradient variation (CoGV), plasticity that is congruent with genetic differentiation, may enhance performance at range margins, whereas its opposite, counter-gradient variation (CnGV) may hinder performance. Here we report findings of reciprocal transplant experiments intended to tease apart the roles of differentiation and plasticity in producing phenotypic variation across a geographic border between two plant subspecies. Clarkia xantiana ssp. xantiana and C. xantiana ssp. parviflora are California-endemic annuals that replace each other along a west-east gradient of declining precipitation. We analyzed variation in floral traits, phenological traits, and vegetative morphological and developmental traits by sowing seeds of 18 populations (six of ssp. xantiana and 12 of ssp. parviflora) at three sites (one in each subspecies' exclusive range and one in the subspecies' contact zone), in two growing seasons (an exceptionally wet El Niño winter and a much drier La Niña winter). Significant genetic differences between subspecies appeared in 11 of 12 traits, and differences were of the same sign as in nature. These findings are consistent with the hypothesis that selection is responsible for subspecies differences. Geographic variation within subspecies over part of the spatial gradient mirrored between-subspecies differences present at a larger scale. All traits showed significant plasticity in response to spatial and temporal environmental variation. Plasticity patterns ranged from spatial and temporal CoGV (e.g., in node of first flower), to spatial CnGV (e.g., in flowering time), to patterns that were neither CoGV nor CnGV (the majority of traits). Instances of CoGV may reflect adaptive plasticity and may serve to increase performance under year-to-year environmental variation and at sites near the subspecies border. However, the presence of spatial CnGV in some critical traits suggests that subspecies ranges may also be constrained by patterns of plasticity.


Assuntos
Adaptação Biológica , Clarkia/anatomia & histologia , Clarkia/genética , Variação Genética , Fenótipo , Seleção Genética , California , Clima , Geografia , Componentes Aéreos da Planta/anatomia & histologia , Especificidade da Espécie , Fatores de Tempo
11.
Evolution ; 46(5): 1313-1328, 1992 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28568983

RESUMO

Gynodioecy is a dimorphic breeding system in which hermaphrodite and female individuals coexist in populations. Theoretical models have shown that if nuclear genes control sex expression, then gynodioecy can evolve only when females have large advantages in one or more fitness components. These female advantages must be large enough that females' expected lifetime production of viable seeds is more than twice that of hermaphrodites. Previous studies have found that cytoplasmic inheritance and/or a large offspring-vigor advantage of females (caused by hermaphrodite self-pollination and inbreeding depression of selfed seeds) account for this breeding system's evolution. This paper reports studies of gynodioecy in Phacelia linearis, an insect-pollinated annual plant in which gender inheritance appears to be nuclear. Twenty-six P. linearis populations surveyed in northern Utah, USA, contain a majority of perfect-flowered hermaphrodites, but most (22) also contain male-sterile individuals (females), at frequencies of up to 0.16. The hermaphrodite selfing rate is low (0.00-0.20 in four populations). Maternal gender does not consistently affect components of offspring vigor, such as seed size, germination rate, seedling survivorship, and vegetative size. Plants of the two genders do not differ in number of seeds per fruit or mean seed mass. Females produce significantly more fruits and seeds than hermaphrodites in natural populations. The ratio of the mean lifetime seed production of females to the mean lifetime seed production of hermaphrodites ranged from 1.31 to 2.52 in six natural populations. Females have greater shoot biomass than hermaphrodites and produce more seeds at any given shoot biomass than hermaphrodites, suggesting that their seed-production advantage arises from gender-specific patterns of resource allocation to growth and reproduction. The gender difference in plant size varies across environments and across genetic backgrounds. In this species nuclear gynodioecy appears to be evolutionarily stable mainly because of resource compensation by females, without a large outcrossing advantage of females.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA