Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(1): 65, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38112987

RESUMO

In view of the widespread and distribution of several classes and types of organic contaminants, increased efforts are needed to reduce their spread and subsequent environmental contamination. Although several remediation approaches are available, adsorption and photodegradation technologies are presented in this review as one of the best options because of their environmental friendliness, cost-effectiveness, accessibility, less selectivity, and wider scope of applications among others. The bandgap, particle size, surface area, electrical properties, thermal stability, reusability, chemical stability, and other properties of silver nanoparticles (AgNPS) are highlighted to account for their suitability in adsorption and photocatalytic applications, concerning organic contaminants. Literatures have been reviewed on the application of various AgNPS as adsorbent and photocatalyst in the remediation of several classes of organic contaminants. Theories of adsorption have also been outlined while photocatalysis is seen to have adsorption as the initial mechanism. Challenges facing the application of silver nanoparticles have also been highlighted and possible solutions have been presented. However, current information is dominated by applications on dyes and the view of the authors supports the need to strengthen the usefulness of AgNPS in adsorption and photodegradation of more classes of organic contaminants, especially emerging contaminants. We also encourage the simultaneous applications of adsorption and photodegradation to completely convert toxic wastes to harmless forms.


Assuntos
Nanopartículas Metálicas , Prata , Adsorção , Monitoramento Ambiental , Fotólise , Nanopartículas Metálicas/química , Cinética
2.
Environ Monit Assess ; 195(6): 658, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37166547

RESUMO

The present study captures the precipitation synthesis of zinc nanoparticles and modification with alumina and oleic acid. The crystalline size evaluated from the XRD profile of the zinc oxide nanoparticles was 18.05 nm but was reduced to 14.20 and 14.50 nm upon modification with oleic acid and alumina. The XRD spectra also showed evidence of the amorphous nature of zinc oxide nanoparticles and subsequent enhancement upon modification. A porous appearance was observed in the SEM instrumentation but seems to be enhanced by modification. The FTIR absorption spectra of the nanoparticles showed a peak associated with ZnO vibration around 449 cm, but the enhanced intensity was observed due to modification. The prepared ZnO-NPs and the modified samples were good materials for the adsorption removal of glyphosate from water, recording efficiencies above 94% at neutral pH and showing a possible incremental trend with an enhanced period of contact and adsorbent dosage. The adsorbents showed maximum capacity that ranged from 82.85 to 82. 97 mg/g. The adsorption models of Freundlich, Temkin, Dubinin-Radushkevich and BET showed excellent fitness. Results from computational results complemented experimental data and were used to identify the sites for adsorption and characteristics of molecular descriptors for the systems.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Praguicidas , Poluentes Químicos da Água , Óxido de Zinco , Óxido de Zinco/química , Nanopartículas Metálicas/química , Ácido Oleico , Zinco , Monitoramento Ambiental , Nanopartículas/química , Água/química , Óxido de Alumínio , Adsorção , Poluentes Químicos da Água/análise , Cinética , Concentração de Íons de Hidrogênio , Glifosato
3.
Environ Monit Assess ; 195(12): 1416, 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925387

RESUMO

Photocatalysed degradation of environmental contaminants is one of the most fashionable technologies in the purification of water because the method converts toxic products to nontoxic ones. In this study, a method has been developed to synthesize novel nanocomposites of Na-Ca-Al-Si oxides for the first time. The average surface area, pore volume and pore size for the novel product were 1742.55 m2/g, 0.3499 cc/g and 3.197 nm respectively. The crystal parameters were a = 7.1580 Å, b = 7.4520 Å, c = 7.7160 Å, α = 115.0600, ß = 107.3220, γ = 100.4380, density (calculated) = 2.0 × 103g/cm3 and cell volume = 332.7 Å3 respectively. The average crystalline size deduced from the Scherrer equation (i.e. 6.9393 nm) was higher than the value of 1.024 nm obtained from the graphical method. The FTIR and UV spectra of the nanocomposites were unique and provided baseline information that characterises the new product. XRD profiling of the new product reveals the existent of a silica framework consisting of NaAlSi3O3 and CaAl2Si2O8 The synthesized nanocomposites is an effective photocatalyst for the degradation of methyl orange dye in water, with aoptimum efficiency of 96% at an initial dye concentration of 10 ppm, the adsorbent dosage of 0.5 g,contact time of 90 min and pH of 2.5. The Langmuir-Hinshelwood, modified Freundlich and pseudo-second kinetic models were significant in the description of the photocatalytic kinetics of the degraded dye molecules.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Corantes/química , Monitoramento Ambiental , Água/química , Nanocompostos/química , Catálise , Cinética , Poluentes Químicos da Água/química
4.
Molecules ; 27(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35566341

RESUMO

The corrosion of metals, i.e., the initiation and acceleration of the surface deterioration of metals through an electrochemical reaction with the surrounding intrusive environment, is a global concern because of the economic and environmental impacts. Corrosion inhibitors are considered the most practical choice among the available corrosion protection techniques due to their effectiveness in terms of functionality and cost. The use of traditional and toxic corrosion inhibitors has led to environmental issues, arousing the need for green counterparts that are environmentally friendly, easily accessible, biodegradable, and cost-effective. In this review, the utilization of green corrosion inhibitors purely acquired from renewable sources is explored, with an in-depth focus on the recent advancements in the use of fruit and vegetable extracts as green corrosion inhibitors. In particular, fruits and vegetables are natural sources of various phytochemicals that exhibit key potential in corrosion inhibition. To shed light on the true potential of such extracts in the protection of steel in acidic environments, the experimental techniques involved in corrosion inhibition and the mechanism of corrosion inhibition are discussed in detail. The study highlights the potential of fruit and vegetable extracts as non-toxic, economical, and effective corrosion inhibitors in the pursuit of green chemistry. In addition to discussing and outlining the current status and opportunities for employing fruit and vegetable extracts as corrosion inhibitors, the current review outlines the challenges involved in the utilization of such extracts in corrosion inhibition.


Assuntos
Frutas , Verduras , Corrosão , Extratos Vegetais , Aço
5.
Artigo em Inglês | MEDLINE | ID: mdl-38630403

RESUMO

Numerous technological advancements have been developed to tackle the issue of wastewater remediation effectively. However, the practical application of these technologies on a large scale has faced several challenges that have hindered their progress. These challenges include low selectivity, high energy requirements, and significant expenses. Nanoscale materials have demonstrated remarkable effectiveness in removing a wide range of contaminants. Nanoscale zero-valent iron (NZVI) exhibits a range of distinctive physical and chemical properties that have proven to be highly effective in various environmental remediation applications. These include its impressive surface area, remarkable reactivity, and its capacity to create stable colloidal suspensions. The paper explores the synthetic techniques for NZVI with special emphasis on green synthesis and the use of capping or support agents for maintaining stability and enhancing the reactivity of NZVI. The various structural and reactivity aspects of NZVI have been highlighted for its potential application in wastewater treatment sequestrating various categories of inorganic and organic contaminants. The discussion also delves into the limitations of NZVI, highlighting its dependence on water as a medium for contact reaction or electron transfer through the action mechanism of NZVI in adsorptive and photocatalytic sequestration of contaminants. The beneficial potential of NZVI-based composite systems in the field of environmental remediation has also been included which aids in the application of NZVI in environmental remediation.

6.
Environ Sci Pollut Res Int ; 30(34): 81417-81432, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36057067

RESUMO

The development of technologies for the removal of dye from aqueous solution is most desirable if the end product is relatively green (i.e., environmentally friendly). Photodegradation (as one of such technology) and photolysis (without the catalyst) was applied to investigate the role of sol-gel synthesized calcium oxide nanoparticle (using the oyster shell as the precursor). The results obtained gave substantial evidence that calcium oxide nanoparticles catalyzed the degradation of the methylene blue dye up to a maximum percentage of 98 % removal. Degradation efficiency displayed a strong dependency on time, initial dye concentration, catalyst load, pH, and ionic strength. Chi-square and sum of square error analysis indicated that the photodegradation kinetics fitted the Langmuir-Hinshelwood, first order, and pseudo first-order models best. The half-life of the dye was significantly reduced from hours to minutes due to photocatalysis. Quantum chemical calculations indicated that the degradation proceeded through adsorption, deformation/degradation, and desorption through the chloride end of the molecule linked to the calcium active center of the catalyst. Results from Fukui functions and molecular descriptors analysis confirmed the mechanism of photocatalysis.


Assuntos
Nanopartículas , Ostreidae , Poluentes Químicos da Água , Animais , Azul de Metileno/química , Nanopartículas/química , Óxidos , Água , Cinética , Adsorção , Poluentes Químicos da Água/química
7.
Environ Sci Pollut Res Int ; 30(23): 64036-64057, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37059957

RESUMO

The present study was designed to synthesize and characterize calcium oxide nanoparticles (using mangrove oyster shell as a precursor) and apply the synthesized nanoparticles as a photocatalyst to degrade procaine penicillin in an aqueous solution. The photocatalyst exhibited an average band gap of 4.42 eV, showed a maximum wavelength of absorbance in the UV region (i.e., 280 nm), and is a microporous nanoparticle with a particle diameter of 50 nm. The photocatalyzed degradation of the drug was conducted under natural sunlight, and the influence of parameters such as the period of contact, catalyst load, pH, initial drug concentration, and ionic strength was investigated concerning the degradation profile. The results obtained from response surface analysis indicated that an optimum degradation efficiency of about 93% can be obtained at a concentration, pH, and catalyst dosage of 0.125 M, 2, and 0.20 g respectively, at 0.902 desirabilities. The Langmuir-Hinshelwood, modified Freundlich, parabolic diffusion, pseudo-first-/second-order, and zero-, first-, and second-order kinetic parameters were tested to ascertain the best model that best described the experimental data. Consequently, the Langmuir-Hinshelwood, modified Freundlich, and pseudo-second-order models were accepted based on the minimum error and higher R2 values. Based on the Langmuir-Hinshelwood rate constants for adsorption and photodegradation as well as the evaluated valence bond potential, the degradation of the drug first proceeded through the mechanism of adsorption and followed by the oxidation of the drug by superoxide (generated from the interaction of electrons that generated by through the absorption of UV radiation). The quantum chemical calculation gave evidence that pointed towards the establishment of strong agreement with experimental data and also showed that the carboxyl functional group in the drug is the target site for adsorption and subsequent degradation.


Assuntos
Crassostrea , Nanopartículas , Poluentes Químicos da Água , Animais , Penicilina G Procaína , Nanopartículas/química , Água/química , Luz Solar , Adsorção , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
8.
Turk J Chem ; 45(6): 1690-1706, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38144602

RESUMO

Nanomaterials have garnered the significant interest of scientists owing to their technological as well as medical applications. In particular, metal and metal oxide nanoparticles have gained prominence because of their enhanced performance as compared to their bulk counterparts. Metal-supported nanomaterials are anticipated to make major contributions to solving today's most challenging issues, like energy harvesting and environmental remediation. The incorporation of nanoparticles into sensors has significantly enhanced their precision and selectivity. With the advent of green chemistry, green synthetic techniques have been prioritized for the synthesis of single and multicomponent nanomaterials. In the current review, we have addressed the multidimensional applications of nanoparticles in various sectors, including surface coatings, biosensing, environmental remediation, energy devices, construction, and nano probing, etc. This study focuses on the categorization of nanomaterials according to their source, dimensions, and composition, along with the exploration of synthetic modes. The eco-friendly and cost-effective greener route for the synthesis of nanoparticles has been explored in detail. Further, the antibacterial and cytotoxic potential has been addressed, and toxicity analysis has been conducted. The study signifies the augmented potential of green synthesized nanoparticles that can prove as economically viable and eco-friendly alternatives to conventional materials.

9.
In Silico Pharmacol ; 5(1): 14, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29308350

RESUMO

Molecular descriptors (including quantum chemical, topological and physicochemical descriptors) were calculated for five m-tolyl derivatives insecticides [namely, carbosulfan (CBS), carbofuran (CBF), isoprocab (IFP), methiocarb (MTC) and isocarbophos (ICP)]. Calculated quantum chemical parameters included the total energy, the electronic energy, the binding energy, the core-core repulsion energy, the heat of formation, the dipole moment and the frontier molecular orbital energies. All the calculated quantum chemical parameters (except dipole moment) exhibited strong correlation with the experimental LD50 values of the studied insecticides (at various Hamiltonians). Calculated topological parameters included the molecular topological index (MTI), polar surface area (PSA), total connectivity (TC), total valence connectivity (TVC), Wiener index (WI), topological diameter (TD) and Balaban index (BI). However, only MTI, PSA, WI and BI exhibited excellent correlation with the toxicological activity of the insecticides. Also among all the calculated physicochemical parameters [logP, surface area (SA), surface volume (SV), hydration energy (EHydr), polarizability (PLZ) and refractivity (RFT)], only SV, EHydr, PLZ and RFT were useful in establishing quantitative structure activity relationship (QSAR). Application of QSAR indicated that the calculated theoretical LD50 values for the studied insecticides displayed excellent correlation with experimentally derived LD50 values. However, best results were obtained from quantum chemical descriptors under modified neglect of atomic overlap (MNDO). The toxicity profile of the insecticides also correlated strongly with ionization energy, electron affinity, global softness and global harness. Reactive sites of each of the insecticides were established using Fukui function, Huckel charges and HOMO/LUMO diagrams. Six new molecules were proposed and their theoretical activities were estimated. The proposed molecules included 2-methyl-2-(methylthio)-2,3-dihydrobenzofuran-7-yl methylcarbamate, O-methyl O-2-((methylaminooxy)carbonyl)phenyl phosphoramidothioate, 2-((methylaminooxy)carbonyl)phenyl methylcarbamate, 2-(1-(methylthio)ethyl)phenyl methylcarbamate, N-methyl-O-(2-(methylthiooxy) benzoyl) hydroxyl amine and 4-methyl naphthalen-2-yl methylcarbamate. Some of the proposed molecules exhibited negative values of LD50 (indicating extreme toxicity) while two of them exhibited values that are comparable to existing insecticides.

10.
J Mol Model ; 17(4): 633-47, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20524023

RESUMO

Experimental aspect of the inhibition of the corrosion of mild steel by oxaldehydes was carried out using gravimetric, gasometric and thermometric methods while the theoretical studies were carried out using quantum chemical principle and quantitative structure activity relation (QSAR) approaches. The results obtained indicated that the studied oxaldehydes are good inhibitors for the corrosion of mild steel in HCl solutions. The adsorption of the inhibitors on mild steel surface is spontaneous, exothermic and is consistent with the assumptions of Langmuir adsorption isotherm. Excellent correlations were found between the calculated quantum chemical parameters and experimental inhibition efficiencies of the studied compounds. Correlations between theoretical and experimental inhibition efficiencies (for the different Hamiltonians, namely, PM6, PM3, AM1, RM1 and MNDO) were very close to unity. Condensed Fukui function and condensed softness have been used to determine the sites for electrophilic and nucleophilic attacks on each of the inhibitors.


Assuntos
Aldeídos/química , Ácido Clorídrico/efeitos adversos , Aço , Absorção , Benzoína/química , Corrosão , Modelos Teóricos , Fenilglioxal/análogos & derivados , Fenilglioxal/química , Relação Quantitativa Estrutura-Atividade , Aço/química , Temperatura , Termodinâmica
11.
J Mol Model ; 16(7): 1291-306, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20112037

RESUMO

Inhibitive and adsorption properties of Penicillin G, Amoxicillin and Penicillin V potassium were studied using gravimetric, gasometric and quantum chemical methods. The results obtained indicate that these compounds are good adsorption inhibitors for the corrosion of mild steel in HCl solution. The adsorption of the inhibitors on mild steel surface is spontaneous, exothermic and supports the mechanism of physical adsorption. From DFT results, the sites for nucleophilic attacks in the inhibitors are the carboxylic acid functional group while the sites for electrophilic attacks are in the phenyl ring. There was a strong correlation between theoretical and experimental inhibition efficiencies.


Assuntos
Ácido Clorídrico/química , Modelos Químicos , Penicilinas/química , Aço/química , Algoritmos , Amoxicilina/química , Amoxicilina/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Corrosão , Ácido Clorídrico/farmacologia , Modelos Moleculares , Estrutura Molecular , Penicilina G/química , Penicilina G/farmacologia , Penicilina V/química , Penicilina V/farmacologia , Penicilinas/farmacologia , Propriedades de Superfície/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA