Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Strength Cond Res ; 35(4): 1030-1038, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30299389

RESUMO

ABSTRACT: Bentley, I, Sinclair, JK, Atkins, SJ, Metcalfe, J, and Edmundson, CJ. Effect of velocity-based loading on acceleration kinetics and kinematics during sled towing. J Strength Cond Res 35(4): 1030-1038, 2021-Sled towing (ST) provides an external load in the form of a sled towed using a shoulder or waist harness and cord behind the athlete. Loading strategies have varied greatly between studies, and despite many investigations, there is little agreement on the optimum sled loading to develop the acceleration phase. The aim of this study was to investigate the kinetics and kinematics of velocity-based ST during the acceleration phase of sprinting. Twelve academy rugby league players performed a series of 6-m sprints in different conditions; uninhibited, 10, 15, and 20% velocity decrement (VDec). Sagittal plane kinematics and kinetic measures were examined using 1-way repeated-measures analysis of variance. Results indicated that ST affected trunk, knee, and ankle joint kinematics (p < 0.05). Peak knee flexion increased as sled loads increased (p < 0.05), which may enable athletes to lower their center of mass and increase their horizontal force application. Net horizontal and propulsive impulse measures were greater in all sled conditions (p < 0.05), which increased significantly because sled loadings were heavier. In conclusion, this study highlights the effects of differential loads to help coaches understand acute kinetics and kinematic changes to improve the planning of sprint training.


Assuntos
Desempenho Atlético , Corrida , Aceleração , Atletas , Fenômenos Biomecânicos , Humanos , Cinética
2.
J Strength Cond Res ; 30(3): 768-76, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26332776

RESUMO

Resisted sprint training is performed in a horizontal direction and involves similar muscles, velocities, and ranges of motion (ROM) to those of normal sprinting. Generally, sleds are attached to the athletes through a lead (3 m) and harness; the most common attachment points are the shoulder or waist. At present, it is not known how the different harness point's impact on the kinematics and kinetics associated with sled towing (ST). The aim of the current investigation was to examine the kinetics and kinematics of shoulder and waist harness attachment points in relation to the acceleration phase of ST. Fourteen trained men completed normal and ST trials, loaded at 10% reduction of sprint velocity. Sagittal plane kinematics from the trunk, hip, knee, and ankle were measured, together with stance phase kinetics (third footstrike). Kinetic and kinematic parameters were compared between harness attachments using one-way repeated-measures analysis of variance. The results indicated that various kinetic differences were present between the normal and ST conditions. Significantly greater net horizontal mean force, net horizontal impulses, propulsive mean force, and propulsive impulses were measured (p < 0.05). Interestingly, the waist harness also led to greater net horizontal impulse when compared with the shoulder attachment (p < 0.001). In kinematic terms, ST conditions significantly increased peak flexion in hip, knee, and ankle joints compared with the normal trials (p < 0.05). Results highlighted that the shoulder harness had a greater impact on trunk and knee joint kinematics when compared with the waist harness (p < 0.05). In summary, waist harnesses seem to be the most suitable attachment point for the acceleration phase of sprinting. Sled towing with these attachments resulted in fewer kinematic alterations and greater net horizontal impulse when compared with the shoulder harness. Future research is necessary in order to explore the long-term adaptations of these acute changes.


Assuntos
Condicionamento Físico Humano/métodos , Condicionamento Físico Humano/fisiologia , Corrida/fisiologia , Aceleração , Adulto , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos , Estudos Cross-Over , Articulação do Quadril/fisiologia , Humanos , Cinética , Articulação do Joelho/fisiologia , Masculino , Condicionamento Físico Humano/instrumentação , Distribuição Aleatória , Amplitude de Movimento Articular , Ombro , Tronco/fisiologia , Adulto Jovem
3.
J Appl Biomech ; 29(1): 118-22, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23462448

RESUMO

Biomechanical analysis requires the determination of specific foot contact events. This is typically achieved using force platform information; however, when force platforms are unavailable, alternative methods are necessary. A method was developed for the determination of gait events using an accelerometer mounted to the distal tibia, measuring axial accelerations. The aim of the investigation was to determine the efficacy of this method. Sixteen participants ran at 4.0 m/s ± 5%. Synchronized tibial accelerations and vertical ground reaction forces were sampled at 1000 Hz as participants struck a force platform with their dominant foot. Events determined using the accelerometer, were compared with the corresponding events determined using the force platform. Mean errors of 1.68 and 5.46 ms for average and absolute errors were observed for heel strike and of -3.59 and 5.00 ms for toe-off. Mean and absolute errors of 5.18 and 11.47 ms were also found for the duration of the stance phase. Strong correlations (r = .96) were also observed between duration of stance obtained using the two different methods. The error values compare favorably to other alternative methods of predicting gait events. This suggests that shank-mounted accelerometers can be used to accurately and reliably detect gait events.


Assuntos
Aceleração , Pé/fisiologia , Marcha/fisiologia , Locomoção/fisiologia , Monitorização Ambulatorial/instrumentação , Adulto , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
Sports Biomech ; 12(3): 272-82, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24245052

RESUMO

The treadmill is an attractive device for the investigation of human locomotion, yet the extent to which lower limb kinematics differ from overground running remains a controversial topic. This study aimed to provide an extensive three-dimensional kinematic comparison of the lower extremities during overground and treadmill running. Twelve participants ran at 4.0 m/s (+/- 5%) in both treadmill and overground conditions. Angular kinematic parameters of the lower extremities during the stance phase were collected at 250 Hz using an eight-camera motion analysis system. Hip, knee, and ankle joint kinematics were quantified in the sagittal, coronal, and transverse planes, and contrasted using paired t-tests. Of the analysed parameters hip flexion at footstrike and ankle excursion to peak angle were found to be significantly reduced during treadmill running by 12 degrees (p = 0.001) and 6.6 degrees (p = 0.010), respectively. Treadmill running was found to be associated with significantly greater peak ankle eversion (by 6.3 degrees, p = 0.006). It was concluded that the mechanics of treadmill running cannot be generalized to overground running.


Assuntos
Marcha/fisiologia , Articulações/fisiologia , Corrida/fisiologia , Adolescente , Adulto , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos , Feminino , Articulação do Quadril/fisiologia , Humanos , Imageamento Tridimensional , Articulação do Joelho/fisiologia , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA