Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(4): 1798-1809, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36996092

RESUMO

End-capped peptides modified with reactive functional groups on the N-terminus provide a route to prepare peptide-polymer conjugates for a broad range of applications. Unfortunately, current chemical methods to construct modified peptides rely largely on solid-phase peptide synthesis (SPPS), which lacks green preparative characteristics and is costly, thus limiting its applicability to specialty applications such as regenerative medicine. This work evaluates N-terminally modified N-acryloyl-glutamic acid diethyl ester, N-acryloyl-leucine ethyl ester, and N-acryloyl-alanine ethyl ester as grafters and papain as the protease for the direct addition of amino acid ethyl ester (AA-OEt) monomers via protease-catalyzed peptide synthesis (PCPS) and the corresponding formation of N-acryloyl-functionalized oligopeptides in a one-pot aqueous reaction. It was hypothesized that by building N-acryloyl grafters from AA-OEt monomers that are known to be good substrates for papain in PCPS, the corresponding grafters would yield high grafter conversions, high ratio of grafter-oligopeptide to free NH2-oligopeptide, and high overall yield. However, this work demonstrates based on the grafter/monomers studied herein that the dominant factor in N-acryloyl-AA-OEt grafter conversion is the co-monomer used in co-oligomerizations. Computational modeling using Rosetta qualitatively recapitulates the results and provides insight into the structural and energetic bases underlying substrate selectivity. The findings herein expand our knowledge of factors that determine the efficiency of preparing N-acryloyl-terminated oligopeptides by PCPS that could provide practical routes to peptide macromers for conjugation to polymers and surfaces for a broad range of applications.


Assuntos
Aminoácidos , Peptídeo Hidrolases , Papaína/química , Peptídeos/química , Oligopeptídeos/química , Polímeros , Catálise , Ésteres
2.
Biomacromolecules ; 22(1): 95-105, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-32902261

RESUMO

Silk is a natural fiber that surpasses most man-made polymers in its combination of strength and toughness. Silk fibroin, the primary protein component of silk, can be synthetically mimicked by a linear copolymer with alternating rigid and soft segments. Strategies for chemical synthesis of such silk-like polymers have persistently resulted in poor sequence control, long reaction times, and low molecular weights. Here, we present a two-stage approach for rapidly synthesizing silk-like polymers with precisely defined rigid blocks. This approach utilizes solid-phase peptide synthesis to create uniform oligoalanine "prepolymers", followed by microwave-assisted step-growth polymerization with bifunctional poly(ethylene glycol). Multiple coupling chemistries and reaction conditions were explored, with microwave-assisted click chemistry yielding polymers with Mw ∼ 14 kg/mol in less than 20 min. These polymers formed antiparallel ß-sheets and nanofibers, which is consistent with the structure of natural silk fibroin. Thus, our strategy demonstrates a promising modular approach for synthesizing silk-like polymers.


Assuntos
Fibroínas , Seda , Química Click , Micro-Ondas , Polímeros
3.
Molecules ; 26(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200447

RESUMO

Petroleum-derived plastics dominate currently used plastic materials. These plastics are derived from finite fossil carbon sources and were not designed for recycling or biodegradation. With the ever-increasing quantities of plastic wastes entering landfills and polluting our environment, there is an urgent need for fundamental change. One component to that change is developing cost-effective plastics derived from readily renewable resources that offer chemical or biological recycling and can be designed to have properties that not only allow the replacement of current plastics but also offer new application opportunities. Polyhydroxyalkanoates (PHAs) remain a promising candidate for commodity bioplastic production, despite the many decades of efforts by academicians and industrial scientists that have not yet achieved that goal. This article focuses on defining obstacles and solutions to overcome cost-performance metrics that are not sufficiently competitive with current commodity thermoplastics. To that end, this review describes various process innovations that build on fed-batch and semi-continuous modes of operation as well as methods that lead to high cell density cultivations. Also, we discuss work to move from costly to lower cost substrates such as lignocellulose-derived hydrolysates, metabolic engineering of organisms that provide higher substrate conversion rates, the potential of halophiles to provide low-cost platforms in non-sterile environments for PHA formation, and work that uses mixed culture strategies to overcome obstacles of using waste substrates. We also describe historical problems and potential solutions to downstream processing for PHA isolation that, along with feedstock costs, have been an Achilles heel towards the realization of cost-efficient processes. Finally, future directions for efficient PHA production and relevant structural variations are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA