RESUMO
The large number of spike substitutions in Omicron lineage variants (BA.1, BA.1.1., and BA.2) could jeopardize the efficacy of SARS-CoV-2 vaccines. We evaluated in mice the protective efficacy of the Moderna mRNA-1273 vaccine against BA.1 before or after boosting. Whereas two doses of mRNA-1273 vaccine induced high levels of neutralizing antibodies against historical WA1/2020 strains, lower levels against BA.1 were associated with breakthrough infection and inflammation in the lungs. A primary vaccination series with mRNA-1273.529, an Omicron-matched vaccine, potently neutralized BA.1 but inhibited historical or other SARS-CoV-2 variants less effectively. However, boosting with either mRNA-1273 or mRNA-1273.529 vaccines increased neutralizing titers and protection against BA.1 and BA.2 infection. Nonetheless, the neutralizing antibody titers were higher, and lung viral burden and cytokines were slightly lower in mice boosted with mRNA-1273.529 and challenged with BA.1. Thus, boosting with mRNA-1273 or mRNA-1273.529 enhances protection against Omicron infection with limited differences in efficacy measured.
Assuntos
COVID-19 , SARS-CoV-2 , Vacina de mRNA-1273 contra 2019-nCoV , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Camundongos , SARS-CoV-2/genética , Vacinação , Vacinas Sintéticas , Vacinas de mRNARESUMO
mRNA-1273 vaccine efficacy against SARS-CoV-2 Delta wanes over time; however, there are limited data on the impact of durability of immune responses on protection. Here, we immunized rhesus macaques and assessed immune responses over 1 year in blood and upper and lower airways. Serum neutralizing titers to Delta were 280 and 34 reciprocal ID50 at weeks 6 (peak) and 48 (challenge), respectively. Antibody-binding titers also decreased in bronchoalveolar lavage (BAL). Four days after Delta challenge, the virus was unculturable in BAL, and subgenomic RNA declined by â¼3-log10 compared with control animals. In nasal swabs, sgRNA was reduced by 1-log10, and the virus remained culturable. Anamnestic antibodies (590-fold increased titer) but not T cell responses were detected in BAL by day 4 post-challenge. mRNA-1273-mediated protection in the lungs is durable but delayed and potentially dependent on anamnestic antibody responses. Rapid and sustained protection in upper and lower airways may eventually require a boost.
RESUMO
Vaccines are critical tools for maintaining global health. Traditional vaccine technologies have been used across a wide range of bacterial and viral pathogens, yet there are a number of examples where they have not been successful, such as for persistent infections, rapidly evolving pathogens with high sequence variability, complex viral antigens, and emerging pathogens. Novel technologies such as nucleic acid and viral vector vaccines offer the potential to revolutionize vaccine development as they are well-suited to address existing technology limitations. In this review, we discuss the current state of RNA vaccines, recombinant adenovirus vector-based vaccines, and advances from biomaterials and engineering that address these important public health challenges.
Assuntos
Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/uso terapêutico , Adenoviridae/genética , Animais , Antígenos Virais/genética , Materiais Biocompatíveis , COVID-19/virologia , Sistemas de Liberação de Medicamentos/métodos , Vetores Genéticos/imunologia , Humanos , Imunogenicidade da Vacina , Lipossomos , Nanopartículas , RNA Mensageiro/síntese química , RNA Mensageiro/imunologia , Vacinas de mRNARESUMO
B.1.351 is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant most resistant to antibody neutralization. We demonstrate how the dose and number of immunizations influence protection. Nonhuman primates received two doses of 30 or 100 µg of Moderna's mRNA-1273 vaccine, a single immunization of 30 µg, or no vaccine. Two doses of 100 µg of mRNA-1273 induced 50% inhibitory reciprocal serum dilution neutralizing antibody titers against live SARS-CoV-2 p.Asp614Gly and B.1.351 of 3,300 and 240, respectively. Higher neutralizing responses against B.1.617.2 were also observed after two doses compared to a single dose. After challenge with B.1.351, there was ~4- to 5-log10 reduction of viral subgenomic RNA and low to undetectable replication in bronchoalveolar lavages in the two-dose vaccine groups, with a 1-log10 reduction in nasal swabs in the 100-µg group. These data establish that a two-dose regimen of mRNA-1273 will be critical for providing upper and lower airway protection against major variants of concern.
Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Primatas/imunologia , SARS-CoV-2/imunologia , Vacina de mRNA-1273 contra 2019-nCoV , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/virologia , Linhagem Celular , Chlorocebus aethiops , Feminino , Humanos , Macaca mulatta , Masculino , Mesocricetus , Primatas/virologia , RNA Viral/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação/métodos , Células Vero , Carga Viral/métodosRESUMO
Vaccine-associated enhanced respiratory disease (VAERD) was previously observed in some preclinical models of severe acute respiratory syndrome (SARS) and MERS coronavirus vaccines. We used the SARS coronavirus 2 (SARS-CoV-2) mouse-adapted, passage 10, lethal challenge virus (MA10) mouse model of acute lung injury to evaluate the immune response and potential for immunopathology in animals vaccinated with research-grade mRNA-1273. Whole-inactivated virus or heat-denatured spike protein subunit vaccines with alum designed to elicit low-potency antibodies and Th2-skewed CD4+ T cells resulted in reduced viral titers and weight loss post challenge but more severe pathological changes in the lung compared to saline-immunized animals. In contrast, a protective dose of mRNA-1273 induced favorable humoral and cellular immune responses that protected from viral replication in the upper and lower respiratory tract upon challenge. A subprotective dose of mRNA-1273 reduced viral replication and limited histopathological manifestations compared to animals given saline. Overall, our findings demonstrate an immunological signature associated with antiviral protection without disease enhancement following vaccination with mRNA-1273.
Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Interações Hospedeiro-Patógeno/imunologia , SARS-CoV-2/imunologia , Vacinas Sintéticas/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Biópsia , Vacinas contra COVID-19/administração & dosagem , Modelos Animais de Doenças , Humanos , Imunoglobulina G , Imuno-Histoquímica , Camundongos , Avaliação de Resultados em Cuidados de Saúde , RNA Mensageiro , Glicoproteína da Espícula de Coronavírus/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Vacinas Sintéticas/administração & dosagem , Vacinas de mRNARESUMO
Immune imprinting is a phenomenon in which prior antigenic experiences influence responses to subsequent infection or vaccination1,2. The effects of immune imprinting on serum antibody responses after boosting with variant-matched SARS-CoV-2 vaccines remain uncertain. Here we characterized the serum antibody responses after mRNA vaccine boosting of mice and human clinical trial participants. In mice, a single dose of a preclinical version of mRNA-1273 vaccine encoding Wuhan-1 spike protein minimally imprinted serum responses elicited by Omicron boosters, enabling generation of type-specific antibodies. However, imprinting was observed in mice receiving an Omicron booster after two priming doses of mRNA-1273, an effect that was mitigated by a second booster dose of Omicron vaccine. In both SARS-CoV-2-infected and uninfected humans who received two Omicron-matched boosters after two or more doses of the prototype mRNA-1273 vaccine, spike-binding and neutralizing serum antibodies cross-reacted with Omicron variants as well as more distantly related sarbecoviruses. Because serum neutralizing responses against Omicron strains and other sarbecoviruses were abrogated after pre-clearing with Wuhan-1 spike protein, antibodies induced by XBB.1.5 boosting in humans focus on conserved epitopes targeted by the antecedent mRNA-1273 primary series. Thus, the antibody response to Omicron-based boosters in humans is imprinted by immunizations with historical mRNA-1273 vaccines, but this outcome may be beneficial as it drives expansion of cross-neutralizing antibodies that inhibit infection of emerging SARS-CoV-2 variants and distantly related sarbecoviruses.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , SARS-CoV-2 , Vacinas de mRNA , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Vacina de mRNA-1273 contra 2019-nCoV/administração & dosagem , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , China , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , Reações Cruzadas/imunologia , Epitopos de Linfócito B/imunologia , Vacinas de mRNA/administração & dosagem , Vacinas de mRNA/genética , Vacinas de mRNA/imunologia , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , VacinaçãoRESUMO
A vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is needed to control the coronavirus disease 2019 (COVID-19) global pandemic. Structural studies have led to the development of mutations that stabilize Betacoronavirus spike proteins in the prefusion state, improving their expression and increasing immunogenicity1. This principle has been applied to design mRNA-1273, an mRNA vaccine that encodes a SARS-CoV-2 spike protein that is stabilized in the prefusion conformation. Here we show that mRNA-1273 induces potent neutralizing antibody responses to both wild-type (D614) and D614G mutant2 SARS-CoV-2 as well as CD8+ T cell responses, and protects against SARS-CoV-2 infection in the lungs and noses of mice without evidence of immunopathology. mRNA-1273 is currently in a phase III trial to evaluate its efficacy.
Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/imunologia , Pneumonia Viral/prevenção & controle , Vacinas Virais/imunologia , Vacina de mRNA-1273 contra 2019-nCoV , Animais , Anticorpos Neutralizantes/imunologia , Betacoronavirus/genética , Linfócitos T CD8-Positivos/imunologia , COVID-19 , Vacinas contra COVID-19 , Ensaios Clínicos Fase III como Assunto , Infecções por Coronavirus/genética , Infecções por Coronavirus/virologia , Feminino , Pulmão/imunologia , Pulmão/virologia , Camundongos , Mutação , Nariz/imunologia , Nariz/virologia , Pneumonia Viral/virologia , RNA Mensageiro/genética , RNA Viral/genética , SARS-CoV-2 , Células Th1/imunologia , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/imunologia , Vacinas Virais/química , Vacinas Virais/genéticaRESUMO
BACKGROUND: The safety and immunogenicity of the bivalent omicron-containing mRNA-1273.214 booster vaccine are not known. METHODS: In this ongoing, phase 2-3 study, we compared the 50-µg bivalent vaccine mRNA-1273.214 (25 µg each of ancestral Wuhan-Hu-1 and omicron B.1.1.529 [BA.1] spike messenger RNAs) with the previously authorized 50-µg mRNA-1273 booster. We administered mRNA-1273.214 or mRNA-1273 as a second booster in adults who had previously received a two-dose (100-µg) primary series and first booster (50-µg) dose of mRNA-1273 (≥3 months earlier). The primary objectives were to assess the safety, reactogenicity, and immunogenicity of mRNA-1273.214 at 28 days after the booster dose. RESULTS: Interim results are presented. Sequential groups of participants received 50 µg of mRNA-1273.214 (437 participants) or mRNA-1273 (377 participants) as a second booster dose. The median time between the first and second boosters was similar for mRNA-1273.214 (136 days) and mRNA-1273 (134 days). In participants with no previous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the geometric mean titers of neutralizing antibodies against the omicron BA.1 variant were 2372.4 (95% confidence interval [CI], 2070.6 to 2718.2) after receipt of the mRNA-1273.214 booster and 1473.5 (95% CI, 1270.8 to 1708.4) after receipt of the mRNA-1273 booster. In addition, 50-µg mRNA-1273.214 and 50-µg mRNA-1273 elicited geometric mean titers of 727.4 (95% CI, 632.8 to 836.1) and 492.1 (95% CI, 431.1 to 561.9), respectively, against omicron BA.4 and BA.5 (BA.4/5), and the mRNA-1273.214 booster also elicited higher binding antibody responses against multiple other variants (alpha, beta, gamma, and delta) than the mRNA-1273 booster. Safety and reactogenicity were similar with the two booster vaccines. Vaccine effectiveness was not assessed in this study; in an exploratory analysis, SARS-CoV-2 infection occurred in 11 participants after the mRNA-1273.214 booster and in 9 participants after the mRNA-1273 booster. CONCLUSIONS: The bivalent omicron-containing vaccine mRNA-1273.214 elicited neutralizing antibody responses against omicron that were superior to those with mRNA-1273, without evident safety concerns. (Funded by Moderna; ClinicalTrials.gov number, NCT04927065.).
Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , Vacinas Combinadas , Vacinas de mRNA , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Vacina de mRNA-1273 contra 2019-nCoV/uso terapêutico , Adulto , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/uso terapêutico , Humanos , Imunogenicidade da Vacina/imunologia , SARS-CoV-2 , Vacinas Combinadas/imunologia , Vacinas Combinadas/uso terapêutico , Vacinas de mRNA/imunologia , Vacinas de mRNA/uso terapêuticoRESUMO
Boosting with mRNA vaccines encoding variant-matched spike proteins has been implemented to mitigate their reduced efficacy against emerging SARS-CoV-2 variants. Nonetheless, in humans, it remains unclear whether boosting in the ipsilateral or contralateral arm with respect to the priming doses impacts immunity and protection. Here, we boosted K18-hACE2 mice with either monovalent mRNA-1273 (Wuhan-1 spike) or bivalent mRNA-1273.214 (Wuhan-1 + BA.1 spike) vaccine in the ipsilateral or contralateral leg after a two-dose priming series with mRNA-1273. Boosting in the ipsilateral or contralateral leg elicited equivalent levels of serum IgG and neutralizing antibody responses against Wuhan-1 and BA.1. While contralateral boosting with mRNA vaccines resulted in the expansion of spike-specific B and T cells beyond the ipsilateral draining lymph node (DLN) to the contralateral DLN, administration of a third mRNA vaccine dose at either site resulted in similar levels of antigen-specific germinal center B cells, plasmablasts/plasma cells, T follicular helper cells, and CD8+ T cells in the DLNs and the spleen. Furthermore, ipsilateral and contralateral boosting with mRNA-1273 or mRNA-1273.214 vaccines conferred similar homologous or heterologous immune protection against SARS-CoV-2 BA.1 virus challenge with equivalent reductions in viral RNA and infectious virus in the nasal turbinates and lungs. Collectively, our data show limited differences in B and T cell immune responses after ipsilateral and contralateral site boosting by mRNA vaccines that do not substantively impact protection against an Omicron strain.IMPORTANCESequential boosting with mRNA vaccines has been an effective strategy to overcome waning immunity and neutralization escape by emerging SARS-CoV-2 variants. However, it remains unclear how the site of boosting relative to the primary vaccination series shapes optimal immune responses or breadth of protection against variants. In K18-hACE2 transgenic mice, we observed that intramuscular boosting with historical monovalent or variant-matched bivalent vaccines in the ipsilateral or contralateral limb elicited comparable levels of serum spike-specific antibody and antigen-specific B and T cell responses. Moreover, boosting on either side conferred equivalent protection against a SARS-CoV-2 Omicron challenge strain. Our data in mice suggest that the site of intramuscular boosting with an mRNA vaccine does not substantially impact immunity or protection against SARS-CoV-2 infection.
Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de mRNA , Animais , SARS-CoV-2/imunologia , Camundongos , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/virologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Vacinas de mRNA/imunologia , Feminino , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Humanos , Linfócitos B/imunologia , Linfócitos T/imunologia , Enzima de Conversão de Angiotensina 2/imunologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismoRESUMO
BACKGROUND: Monovalent Omicron XBB.1.5-containing vaccines were approved for coronavirus disease 2019 (COVID-19) 2023-2024 immunizations. METHODS: This ongoing, open-label, phase 2/3 study evaluated messenger RNA (mRNA)-1273.815 monovalent (50-µg Omicron XBB.1.5 spike mRNA) and mRNA-1273.231 bivalent (25-µg each Omicron XBB.1.5 and BA.4/BA.5 spike mRNAs) vaccines, administered as fifth doses to adults who previously received primary series, third doses of an original mRNA COVID-19 vaccine, and fourth doses of an Omicron BA.4/BA.5 bivalent vaccine. Interim safety and immunogenicity 29 days after vaccination are reported. RESULTS: Participants (randomized 1:1) received 50-µg of mRNA-1273.815 (n = 50) or mRNA-1273.231 (n = 51); median intervals (interquartile range) from prior BA.4/BA.5 bivalent doses were 8.2 (8.1-8.3) and 8.3 (8.1-8.4) months, respectively. Fold increases in neutralizing antibody (nAb) against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants from prebooster nAb levels were numerically higher against XBB.1.5, XBB.1.16, EG.5.1, BA.2.86, and JN.1 than BA.4/BA.5, BQ.1.1, or D614G on day 29. Monovalent vaccine also cross-neutralized FL.1.5.1, EG.5.1, BA.2.86, HK.3.1, HV.1, and JN.1 variants in a participant subset (n = 20) 15 days after vaccination. Reactogenicity was similar to that of mRNA-1273 vaccines. CONCLUSIONS: XBB.1.5-containing mRNA-1273 vaccines elicit robust, diverse nAb responses against more recent SARS-CoV-2 variants, including JN.1, supporting the XBB.1.5-spike update for COVID-19 vaccines.
Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunogenicidade da Vacina , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , COVID-19/imunologia , Adulto , Feminino , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Anticorpos Antivirais/sangue , Masculino , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Pessoa de Meia-Idade , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/administração & dosagem , Vacinação , Adulto Jovem , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , IdosoRESUMO
BACKGROUND: Vaccines to prevent coronavirus disease 2019 (Covid-19) are urgently needed. The effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines on viral replication in both upper and lower airways is important to evaluate in nonhuman primates. METHODS: Nonhuman primates received 10 or 100 µg of mRNA-1273, a vaccine encoding the prefusion-stabilized spike protein of SARS-CoV-2, or no vaccine. Antibody and T-cell responses were assessed before upper- and lower-airway challenge with SARS-CoV-2. Active viral replication and viral genomes in bronchoalveolar-lavage (BAL) fluid and nasal swab specimens were assessed by polymerase chain reaction, and histopathological analysis and viral quantification were performed on lung-tissue specimens. RESULTS: The mRNA-1273 vaccine candidate induced antibody levels exceeding those in human convalescent-phase serum, with live-virus reciprocal 50% inhibitory dilution (ID50) geometric mean titers of 501 in the 10-µg dose group and 3481 in the 100-µg dose group. Vaccination induced type 1 helper T-cell (Th1)-biased CD4 T-cell responses and low or undetectable Th2 or CD8 T-cell responses. Viral replication was not detectable in BAL fluid by day 2 after challenge in seven of eight animals in both vaccinated groups. No viral replication was detectable in the nose of any of the eight animals in the 100-µg dose group by day 2 after challenge, and limited inflammation or detectable viral genome or antigen was noted in lungs of animals in either vaccine group. CONCLUSIONS: Vaccination of nonhuman primates with mRNA-1273 induced robust SARS-CoV-2 neutralizing activity, rapid protection in the upper and lower airways, and no pathologic changes in the lung. (Funded by the National Institutes of Health and others.).
Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/imunologia , Pneumonia Viral/prevenção & controle , Vacinas Virais/imunologia , Vacina de mRNA-1273 contra 2019-nCoV , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Betacoronavirus/fisiologia , Antígenos CD4 , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/patologia , Infecções por Coronavirus/terapia , Modelos Animais de Doenças , Relação Dose-Resposta Imunológica , Imunização Passiva , Pulmão/patologia , Pulmão/virologia , Macaca mulatta , Pneumonia Viral/patologia , Pneumonia Viral/terapia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Linfócitos T/imunologia , Carga Viral , Vacinas Virais/administração & dosagem , Replicação Viral , Soroterapia para COVID-19RESUMO
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has led to growing concerns over increased transmissibility and the ability of some variants to partially escape immunity. Sera from participants immunized on a prime-boost schedule with the mRNA-1273 COVID-19 vaccine were tested for neutralizing activity against several SARS-CoV-2 variants, including variants of concern (VOCs) and variants of interest (VOIs), compared to neutralization of the wild-type SARS-CoV-2 virus (designated D614G). Results showed minimal, statistically nonsignificant effects on neutralization titers against the B.1.1.7 (Alpha) variant (1.2-fold reduction compared with D614G); other VOCs, such as B.1.351 (Beta, including B.1.351-v1, B.1.351-v2, and B.1.351-v3), P.1 (Gamma), and B.1.617.2 (Delta), showed significantly decreased neutralization titers ranging from 2.1-fold to 8.4-fold reductions compared with D614G, although all remained susceptible to mRNA-1273-elicited serum neutralization. IMPORTANCE In light of multiple variants of SARS-CoV-2 that have been documented globally during the COVID-19 pandemic, it remains important to continually assess the ability of currently available vaccines to confer protection against newly emerging variants. Data presented herein indicate that immunization with the mRNA-1273 COVID-19 vaccine produces neutralizing antibodies against key emerging variants tested, including variants of concern and variants of interest. While the serum neutralization elicited by mRNA-1273 against most variants tested was reduced compared with that against the wild-type virus, the level of neutralization is still expected to be protective. Such data are crucial to inform ongoing and future vaccination strategies to combat COVID-19.
Assuntos
Anticorpos Neutralizantes/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Pandemias/prevenção & controle , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacina de mRNA-1273 contra 2019-nCoV , Adulto , Anticorpos Antivirais/imunologia , Feminino , Humanos , Masculino , Mutação , Testes de Neutralização , VacinaçãoAssuntos
Anticorpos Neutralizantes/sangue , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Vacina de mRNA-1273 contra 2019-nCoV , Anticorpos Antivirais/sangue , COVID-19/prevenção & controle , Humanos , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Estatísticas não Paramétricas , Vacinas Sintéticas/imunologia , Vacinas de mRNARESUMO
BACKGROUND: Prophylactic and therapeutic vaccines often depend upon a strong activation of the innate immune system to drive a potent adaptive immune response, often mediated by a strong adjuvant. For a number of adjuvants immunological readouts may not be consistent across species. METHODS: In this study, we evaluated the innate immunostimulatory potential of mRNA vaccines in both humans and mice, using a novel mRNA-based vaccine encoding influenza A hemagglutinin of the pandemic strain H1N1pdm09 as a model. This evaluation was performed using an in vitro model of human innate immunity and in vivo in mice after intradermal injection. RESULTS: Results suggest that immunostimulation from the mRNA vaccine in humans is similar to that in mice and acts through cellular RNA sensors, with genes for RLRs [ddx58 (RIG-1) and ifih1 (MDA-5)], TLRs (tlr3, tlr7, and tlr8-human only), and CLRs (clec4gp1, clec2d, cledl1) all significantly up-regulated by the mRNA vaccine. The up-regulation of TLR8 and TLR7 points to the involvement of both mDCs and pDCs in the response to the mRNA vaccine in humans. In both humans and mice activation of these pathways drove maturation and activation of immune cells as well as production of cytokines and chemokines known to attract and activate key players of the innate and adaptive immune system. CONCLUSION: This translational approach not only allowed for identification of the basic mechanisms of self-adjuvantation from the mRNA vaccine but also for comparison of the response across species, a response that appears relatively conserved or at least convergent between the in vitro human and in vivo mouse models.
Assuntos
Adjuvantes Imunológicos/farmacologia , Engenharia Genética , Imunidade Inata/efeitos dos fármacos , Vacinas contra Influenza/imunologia , RNA Mensageiro/administração & dosagem , Pesquisa Translacional Biomédica , Animais , Sequência de Bases , Relação Dose-Resposta Imunológica , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Imunidade Inata/genética , Linfonodos/metabolismo , Camundongos Endogâmicos C57BLRESUMO
Although vaccines have reduced the burden of COVID-19, their efficacy in helminth infection-endemic areas is not well characterized. We evaluated the impact of infection by Heligmosomoides polygyrus bakeri (Hpb), a murine intestinal roundworm, on the efficacy of an mRNA vaccine targeting the Wuhan-1 spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in mice. Although immunization generated similar B cell responses in Hpb-infected and uninfected mice, polyfunctional CD4+ and CD8+ T cell responses were markedly reduced in Hpb-infected mice. Hpb-infected and mRNA-vaccinated mice were protected against the ancestral SARS-CoV-2 strain WA1/2020, but control of lung infection was diminished against an Omicron variant compared with animals immunized without Hpb infection. Helminth-mediated suppression of spike protein-specific CD8+ T cell responses occurred independently of signal transducer and activator of transcription 6 (STAT6) signaling, whereas blockade of interleukin-10 (IL-10) rescued vaccine-induced CD8+ T cell responses. Together, these data show that, in mice, intestinal helminth infection impaired vaccine-induced T cell responses through an IL-10 pathway, which compromised protection against antigenically drifted SARS-CoV-2 variants.
Assuntos
Linfócitos T CD8-Positivos , Vacinas contra COVID-19 , COVID-19 , Interleucina-10 , Nematospiroides dubius , SARS-CoV-2 , Animais , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Camundongos , Nematospiroides dubius/imunologia , Vacinas contra COVID-19/imunologia , Interleucina-10/metabolismo , Linfócitos T CD8-Positivos/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Camundongos Endogâmicos C57BL , Feminino , Linfócitos T/imunologia , Infecções por Strongylida/imunologia , Fator de Transcrição STAT6/metabolismoRESUMO
Background: Characterizing the antibody epitope profiles of messenger RNA (mRNA)-based vaccines against SARS-CoV-2 can aid in elucidating the mechanisms underlying the antibody-mediated immune responses elicited by these vaccines. Methods: This study investigated the distinct antibody epitopes toward the SARS-CoV-2 spike (S) protein targeted after a two-dose primary series of mRNA-1273 followed by a booster dose of mRNA-1273 or a variant-updated vaccine among serum samples from clinical trial adult participants. Results: Multiple S-specific epitopes were targeted after primary vaccination; while signal decreased over time, a booster dose after >6 months largely revived waning antibody signals. Epitope identity also changed after booster vaccination in some subjects, with four new S-specific epitopes detected with stronger signals after boosting than with primary vaccination. Notably, the strength of antibody responses after booster vaccination differed by the exact vaccine formulation, with variant-updated mRNA-1273.211 and mRNA-1273.617.2 booster formulations inducing significantly stronger S-specific signals than a mRNA-1273 booster. Conclusion: Overall, these results identify key S-specific epitopes targeted by antibodies induced by mRNA-1273 primary and variant-updated booster vaccination.
Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , Vacinas contra COVID-19 , Adulto , Humanos , Anticorpos , Vacinação , Epitopos , RNA Mensageiro/genética , SARS-CoV-2 , Vacinas de mRNARESUMO
Although vaccines have reduced COVID-19 disease burden, their efficacy in helminth infection endemic areas is not well characterized. We evaluated the impact of infection by Heligmosomoides polygyrus bakeri (Hpb), a murine intestinal hookworm, on the efficacy of an mRNA vaccine targeting the Wuhan-1 spike protein of SARS-CoV-2. Although immunization generated similar B cell responses in Hpb-infected and uninfected mice, polyfunctional CD4+ and CD8+ T cell responses were markedly reduced in Hpb-infected mice. Hpb-infected and mRNA vaccinated mice were protected against the ancestral SARS-CoV-2 strain WA1/2020, but control of lung infection was diminished against an Omicron variant compared to animals immunized without Hpb infection. Helminth mediated suppression of spike-specific CD8+ T cell responses occurred independently of STAT6 signaling, whereas blockade of IL-10 rescued vaccine-induced CD8+ T cell responses. In mice, intestinal helminth infection impairs vaccine induced T cell responses via an IL-10 pathway and compromises protection against antigenically shifted SARS-CoV-2 variants.
RESUMO
Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with antigenic changes in the spike protein are neutralized less efficiently by serum antibodies elicited by legacy vaccines against the ancestral Wuhan-1 virus. Nonetheless, these vaccines, including mRNA-1273 and BNT162b2, retained their ability to protect against severe disease and death, suggesting that other aspects of immunity control infection in the lung. Vaccine-elicited antibodies can bind Fc gamma receptors (FcγRs) and mediate effector functions against SARS-CoV-2 variants, and this property correlates with improved clinical coronavirus disease 2019 outcome. However, a causal relationship between Fc effector functions and vaccine-mediated protection against infection has not been established. Here, using passive and active immunization approaches in wild-type and FcγR-knockout mice, we determined the requirement for Fc effector functions to control SARS-CoV-2 infection. The antiviral activity of passively transferred immune serum was lost against multiple SARS-CoV-2 strains in mice lacking expression of activating FcγRs, especially murine FcγR III (CD16), or depleted of alveolar macrophages. After immunization with the pre-clinical mRNA-1273 vaccine, control of Omicron BA.5 infection in the respiratory tract also was lost in mice lacking FcγR III. Our passive and active immunization studies in mice suggest that Fc-FcγR engagement and alveolar macrophages are required for vaccine-induced antibody-mediated protection against infection by antigenically changed SARS-CoV-2 variants, including Omicron strains.
Assuntos
COVID-19 , Vacinas , Animais , Humanos , Camundongos , SARS-CoV-2/genética , Vacina de mRNA-1273 contra 2019-nCoV , Receptores de IgG/genética , Vacina BNT162 , COVID-19/prevenção & controle , Anticorpos Antivirais , Camundongos KnockoutRESUMO
We previously presented day 29 interim safety and immunogenicity results from a phase 2/3 study (NCT04927065) comparing the Omicron-BA.1-containing bivalent vaccine mRNA-1273.214 (50-µg) to the 50-µg mRNA-1273 booster in adults who previously received the mRNA-1273 primary series (100-µg) and mRNA-1273 first booster (50-µg) dose. Primary endpoints were safety, non-inferiority of the neutralizing antibody (nAb) and seroresponse against Omicron BA.1, superiority of the nAb response against Omicron-BA.1, and non-inferiority of the nAb response against ancestral SARS-CoV-2 for second boosters of mRNA-1273.214 versus mRNA-1273 at days 29 and 91. The key secondary endpoint was the seroresponse difference of mRNA-1273.214 versus mRNA-1273 against ancestral SARS-CoV-2 at days 29 and day 91. Participants were sequentially enrolled and dosed with 50-µg of mRNA-1273 (n = 376) or mRNA-1273.214 (n = 437) as second booster doses. Here we present day 91 post-booster results. In participants with no pre-booster, severe acute respiratory syndrome coronavirus 2-infection (SARS-CoV-2), mRNA-1273.214 elicited Omicron-BA.1-nAb titers (95% confidence interval [CI]) that were significantly higher (964.4 [834.4-1114.7]) than those of mRNA-1273 (624.2 [533.1-730.9]) and similar to those of mRNA-1273 against ancestral SARS-CoV-2 at day 91. mRNA-1273.214 also induced higher binding antibody responses against Omicron BA.1 and alpha, gamma and delta variants than mRNA-1273. Safety profiles were similar for both vaccines. The Omicron-BA.1 bivalent vaccine improved antibody responses compared to mRNA-1273 through 90 days post-booster.