Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Exp Biol ; 227(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38699809

RESUMO

Mayflies are typically negatively phototactic during larval development, whereas the adults possess positive phototaxis. However, no extensive research has been done into the wavelength dependence of phototaxis in any mayfly larvae. We measured the repellency rate of Ephoron virgo larvae to light as a function of wavelength in the 368-743 nm spectral range. We established that the magnitude of repellence increased with decreasing wavelength and the maximal responses were elicited by 400 nm violet light. This wavelength dependence of phototaxis is similar to the recently reported spectral sensitivity of positive phototaxis of the twilight-swarming E. virgo adults. Negative phototaxis not only facilitates predation evasion: avoidance of the blue-violet spectral range could also promote the larvae to withdraw towards the river midline in the case of a drop in the water level, when the underwater light becomes enriched with shorter wavelengths as a result of the decreasing depth of overhead river water.


Assuntos
Larva , Luz , Fototaxia , Animais , Larva/fisiologia , Larva/crescimento & desenvolvimento , Fototaxia/fisiologia , Ephemeroptera/fisiologia
2.
Proc Biol Sci ; 289(1973): 20220318, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35473376

RESUMO

Aquatic insect species that leave the water after larval development, such as mayflies, have to deal with extremely different visual environments in their different life stages. Measuring the spectral sensitivity of the compound eyes of the virgin mayfly (Ephoron virgo) resulted in differences between the sensitivity of adults and larvae. Larvae were primarily green-, while adults were mostly UV-sensitive. The sensitivity of adults and larvae was the same in the UV, but in the green spectral range, adults were 3.3 times less sensitive than larvae. Transmittance spectrum measurements of larval skins covering the eye showed that the removal of exuvium during emergence cannot explain the spectral sensitivity change of the eyes. Taking numerous sky spectra from the literature, the ratio of UV and green photons in the skylight was shown to be maximal for θ ≈ -13° solar elevation, which is in the θmin = -14.7° and θmax = -7.1° typical range of swarming that was established from webcam images of real swarmings. We suggest that the spectral sensitivity of both the larval and adult eyes are adapted to the optical environment of the corresponding life stages.


Assuntos
Ephemeroptera , Animais , Olho , Insetos , Larva , Visão Ocular
3.
Parasitol Res ; 119(8): 2399-2409, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32424552

RESUMO

Tabanid flies (Diptera: Tabanidae) are attracted to shiny black targets, prefer warmer hosts against colder ones and generally attack them in sunshine. Horizontally polarised light reflected from surfaces means water for water-seeking male and female tabanids. A shiny black target above the ground, reflecting light with high degrees and various directions of linear polarisation is recognised as a host animal by female tabanids seeking for blood. Since the body of host animals has differently oriented surface parts, the following question arises: How does the attractiveness of a tilted shiny black surface to male and female tabanids depend on the tilt angle δ? Another question relates to the reaction of horseflies to horizontal black test surfaces with respect to their surface temperature. Solar panels, for example, can induce horizontally polarised light and can reach temperatures above 55 °C. How long times would horseflies stay on such hot solar panels? The answer of these questions is important not only in tabanid control, but also in the reduction of polarised light pollution caused by solar panels. To study these questions, we performed field experiments in Hungary in the summer of 2019 with horseflies and black sticky and dry test surfaces. We found that the total number of trapped (male and female) tabanids is highest if the surface is horizontal (δ = 0°), and it is minimal at δ = 75°. The number of trapped males decreases monotonously to zero with increasing δ, while the female catch has a primary maximum and minimum at δ = 0° and δ = 75°, respectively, and a further secondary peak at δ = 90°. Both sexes are strongly attracted to nearly horizontal (0° ≤ δ ≤ 15°) surfaces, and the vertical surface is also very attractive but only for females. The numbers of touchdowns and landings of tabanids are practically independent of the surface temperature T. The time period of tabanids spent on the shiny black horizontal surface decreases with increasing T so that above 58 °C tabanids spent no longer than 1 s on the surface. The horizontally polarised light reflected from solar panels attracts aquatic insects. This attraction is adverse, if the lured insects lay their eggs onto the black surface and/or cannot escape from the polarised signal and perish due to dehydration. Using polarotactic horseflies as indicator insects in our field experiment, we determined the magnitude of polarised light pollution (being proportional to the visual attractiveness to tabanids) of smooth black oblique surfaces as functions of δ and T.


Assuntos
Comportamento Animal/fisiologia , Cor , Dípteros/fisiologia , Temperatura , Animais , Feminino , Hungria , Masculino , Fatores Sexuais , Propriedades de Superfície , Água
4.
J Exp Biol ; 222(Pt 9)2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31015288

RESUMO

Optical detection of horizontally polarized light is widespread among aquatic insects. This process usually occurs in the UV or blue spectral ranges. Recently, it was demonstrated that at least one collembolan species, the water springtail (Podura aquatica) also possesses positive polarotaxis to horizontally polarized light. These hexapods are positively phototactic, live on the surface of calm waters and usually accumulate close to the riparian vegetation. In laboratory experiments, we measured the wavelength dependence of phototaxis and polarotaxis of P. aquatica in the 346-744 nm and 421-744 nm ranges, respectively. According to our results, the action spectrum of phototaxis is bimodal with two peaks in the blue (λ1=484 nm) and green-yellow (λ2=570 nm) ranges, while polarotaxis operates in the blue spectral range. For the first time, we show that collembolan polarotaxis functions in the same spectral range as the polarotaxis of many aquatic insects. We present our experiments and discuss the possible ecological significance of our findings.


Assuntos
Artrópodes/fisiologia , Ecossistema , Luz , Fototaxia , Água/química , Animais , Feminino , Masculino
5.
Appl Opt ; 57(26): 7564-7569, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30461822

RESUMO

Researchers studying the polarization characteristics of the optical environment prefer to use sequential imaging polarimetry, because it is inexpensive and simple. This technique takes polarization pictures through polarizers in succession. Its main drawback is, however, that during sequential exposure of the polarization pictures, the target must not move, otherwise so-called motion artifacts are caused after evaluation of the polarization pictures. How could these disturbing motion artifacts be minimized? Taking inspiration from photography, our idea was to take the polarization pictures with an exposure that is long enough so that the changes of the moving/changing target can be averaged and, thus, motion artifacts are reduced, at least in a special case when the motion has a stable mean. In the laboratory, we demonstrated the performance of this method when the target was a wavy water surface. We found that the errors of the measured degree and angle of polarization of light reflected from the undulating water surface decreased with increasing exposure time (shutter speed) and converged to very low values. Although various simultaneous polarimeters (taking the polarization pictures at once) are available that do not suffer from motion artifacts, our method is much cheaper and performs very well, at least when the target is a wavy water surface.

6.
Biochim Biophys Acta ; 1848(1 Pt B): 203-10, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24853659

RESUMO

Pulmonary surfactant (PS) is characterized by a highly conserved lipid composition and the formation of unique multilamellar structures within the lung. An unusually high concentration of DPPC is a hallmark of PS and is critical to the formation of a high surface area, stable air/water interface; the unusual lipid polymorphisms observed in PS are dependent on surfactant proteins, particularly lung surfactant protein B (SP-B). The molecular mechanisms of lipid trafficking and assembly in PS remain largely uncharacterized. Using (2)H and (31)P NMR, we characterize the dynamics and polymorphisms of the major lipid species in native PS and synthetic lipid mixtures as a function of SP-B1-25 addition. Our findings point to increased dynamics and a departure from a lamellar behavior for DPPC on addition of the peptide, consistent with our observations of DPPC phase separation in native surfactant. The monounsaturated lipids POPC, POPG and POPE remain in a lamellar phase and are less affected than DPPC by surfactant peptide addition. Additionally, we demonstrate that the properties of a native PS can be successfully mimicked by using a fully synthetic lipid mixture allowing the efficient evaluation of peptidomimetics under development for PS replacement therapies via NMR spectroscopy. The specificity of the dynamic changes in DPPC relative to POPC suggests the importance of tuning partitioning properties in successful peptidomimetic design.


Assuntos
Lipídeos/química , Surfactantes Pulmonares/análise , 1,2-Dipalmitoilfosfatidilcolina/química , Sequência de Aminoácidos , Dados de Sequência Molecular
7.
J Exp Biol ; 219(Pt 16): 2567-76, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27312471

RESUMO

The ventral eye of the water-surface-inhabiting springtail Podura aquatica has six ommatidia with horizontal and vertical microvilli and perceives light from the ventral, frontal and frontodorsal regions, whereas the dorsal eye possesses two upward-looking ommatidia with vertical microvilli. The ventral eye may detect water by its polarization sensitivity, even if the insect is resting with its head slightly tipped down on a raised surface. The polarization sensitivity and polarotaxis in springtails (Collembola) have not been investigated. Therefore, we performed behavioural choice experiments to study them in P. aquatica We found that the strength of phototaxis in P. aquatica depends on the polarization characteristics of stimulating light. Horizontally and vertically polarized light were the most and least attractive, respectively, while unpolarized stimulus elicited moderate attraction. We show that horizontally polarized light attracts more springtails than unpolarized, even if the polarized stimulus was 10 times dimmer. Thus, besides phototaxis, P. aquatica also performs polarotaxis with the ability to measure or at least estimate the degree of polarization. Our results indicate that the threshold d* of polarization sensitivity in P. aquatica is between 10.1 and 25.5%.


Assuntos
Insetos/fisiologia , Luz , Água/química , Animais , Imageamento Tridimensional , Estimulação Luminosa , Polarimetria de Varredura a Laser
8.
Appl Opt ; 54(5): 1065-77, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25968023

RESUMO

Cloud cover estimation is an important part of routine meteorological observations. Cloudiness measurements are used in climate model evaluation, nowcasting solar radiation, parameterizing the fluctuations of sea surface insolation, and building energy transfer models of the atmosphere. Currently, the most widespread ground-based method to measure cloudiness is based on analyzing the unpolarized intensity and color distribution of the sky obtained by digital cameras. As a new approach, we propose that cloud detection can be aided by the additional use of skylight polarization measured by 180° field-of-view imaging polarimetry. In the fall of 2010, we tested such a novel polarimetric cloud detector aboard the research vessel Polarstern during expedition ANT-XXVII/1. One of our goals was to test the durability of the measurement hardware under the extreme conditions of a trans-Atlantic cruise. Here, we describe the instrument and compare the results of several different cloud detection algorithms, some conventional and some newly developed. We also discuss the weaknesses of our design and its possible improvements. The comparison with cloud detection algorithms developed for traditional nonpolarimetric full-sky imagers allowed us to evaluate the added value of polarimetric quantities. We found that (1) neural-network-based algorithms perform the best among the investigated schemes and (2) global information (the mean and variance of intensity), nonoptical information (e.g., sun-view geometry), and polarimetric information (e.g., the degree of polarization) improve the accuracy of cloud detection, albeit slightly.

9.
J Opt Soc Am A Opt Image Sci Vis ; 31(7): 1645-56, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25121454

RESUMO

It is a widely discussed hypothesis that Viking seafarers might have been able to locate the position of the occluded sun by means of dichroic or birefringent crystals, the mysterious sunstones, with which they could analyze skylight polarization. Although the atmospheric optical prerequisites and certain aspects of the efficiency of this sky-polarimetric Viking navigation have been investigated, the accuracy of the main steps of this method has not been quantitatively examined. To fill in this gap, we present here the results of a planetarium experiment in which we measured the azimuth and elevation errors of localization of the invisible sun. In the planetarium sun localization was performed in two selected celestial points on the basis of the alignments of two small sections of two celestial great circles passing through the sun. In the second step of sky-polarimetric Viking navigation the navigator needed to determine the intersection of two such celestial circles. We found that the position of the sun (solar elevation θ(S), solar azimuth φ(S)) was estimated with an average error of +0.6°≤Δθ≤+8.8° and -3.9°≤Δφ≤+2.0°. We also calculated the compass direction error when the estimated sun position is used for orienting with a Viking sun-compass. The northern direction (ω(North)) was determined with an error of -3.34°≤Δω(North)≤+6.29°. The inaccuracy of the second step of this navigation method was high (Δω(North)=-16.3°) when the solar elevation was 5°≤θ(S)≤25°, and the two selected celestial points were far from the sun (at angular distances 95°≤γ(1), γ(2)≤115°) and each other (125°≤δ≤145°). Considering only this second step, the sky-polarimetric navigation could be more accurate in the mid-summer period (June and July), when in the daytime the sun is high above the horizon for long periods. In the spring (and autumn) equinoctial period, alternative methods (using a twilight board, for example) might be more appropriate. Since Viking navigators surely also committed further errors in the first and third steps, the orientation errors presented here underestimate the net error of the whole sky-polarimetric navigation.


Assuntos
Astronomia/métodos , Refratometria/métodos , Navios , Sistema Solar , Astros Celestes
10.
Appl Opt ; 53(23): 5193-204, 2014 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-25320929

RESUMO

Using full-sky imaging polarimetry, we measured the celestial distribution of polarization during sunset and sunrise at partial (78% and 72%) and full (100%) moon in the red (650 nm), green (550 nm), and blue (450 nm) parts of the spectrum. We investigated the temporal change of the patterns of degree p and angle α of linear polarization of sunlit and moonlit skies at dusk and dawn. We describe here the position change of the neutral points of sky polarization, and present video clips about the celestial polarization transition at moonlit twilight. We found that at partial moon and at a medium latitude (47° 15.481' N) during this transition there is a relatively short (10-20 min) period when (i) the maximum of p of skylight decreases, and (ii) from the celestial α pattern neither the solar-antisolar nor the lunar-antilunar meridian can be unambiguously determined. These meridians can serve as reference directions of animal orientation and Viking navigation based on sky polarization. The possible influence of these atmospheric optical phenomena during the polarization transition between sunlit and moonlit skies on the orientation of polarization-sensitive crepuscular/nocturnal animals and the hypothesized navigation of sunstone-aided Viking seafarers is discussed.

11.
Appl Opt ; 52(25): 6185-94, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24085076

RESUMO

It is widely accepted that Vikings used sun-compasses to derive true directions from the cast shadow of a gnomon. It has been hypothesized that when a cast shadow was not formed, Viking navigators relied on crude skylight polarimetry with the aid of dichroic or birefringent crystals, called "sunstones." We demonstrate here that a simple tool, that we call "shadow-stick," could have allowed orientation by a sun-compass with satisfying accuracy when shadows were not formed, but the sun position could have reliably been estimated. In field tests, we performed orientation trials with a set composed of a sun-compass, two calcite sunstones, and a shadow-stick. We show here that such a set could have been an effective orientation tool for Vikings only when clear, blue patches of the sky were visible.


Assuntos
Carbonato de Cálcio/química , Refratometria/instrumentação , Análise Espaço-Temporal , Luz Solar , Campos Magnéticos , Orientação , Tempo (Meteorologia)
12.
Int J Parasitol ; 53(1): 1-11, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356641

RESUMO

Several hypotheses tried to explain the advantages of zebra stripes. According to the most recent explanation, since the borderlines of sunlit white and black stripes can hamper thermal vessel detection by blood-seeking female horseflies, striped host animals are unattractive to these parasites which prefer hosts with a homogeneous coat, on which the temperature gradients above blood vessels can be detected more easily. This hypothesis has been tested in a field experiment with horseflies walking on a grey barrel with thin black stripes which were slightly warmer than their grey surroundings in sunshine, while in shade both areas had practically the same temperature. To eliminate the multiple (optical and thermal) cues of this test target, we repeated this experiment with improved test surfaces: we attracted horseflies by water- or host-imitating homogeneous black test surfaces, beneath which a heatable wire ran. When heated, this invisible and mechanically impalpable wire imitated thermally the slightly warmer subsurface blood vessels, otherwise it was thermally imperceptible. We measured the times spent by landed and walking horseflies on the test surface parts with and without underlying heated or unheated wire. We found that walking female and male horseflies had no preference for any (wired or wireless) area of the water-imitating horizontal plane test surface on the ground, independent of the temperature (heated or unheated) of the underlying wire. These horseflies looked for water, rather than a host. On the other hand, in the case of host-imitating test surfaces, female horseflies preferred the thin surface regions above the wire only if it was heated and thus warmer than its surroundings. This behaviour can be explained exclusively with the higher temperature of the wire given the lack of other sensorial cues. Our results prove the thermal vessel recognition of female horseflies and support the idea that sunlit zebra stripes impede the thermal detection of a host's vessels by blood-seeking horseflies, the consequence of which is the visual (non-thermal) unattractiveness of zebras to horseflies.


Assuntos
Dípteros , Equidae , Animais , Feminino , Masculino , Equidae/parasitologia , Temperatura Alta , Temperatura , Água , Interações Hospedeiro-Parasita , Termografia , Termorreceptores
13.
Insects ; 14(12)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38132634

RESUMO

BACKGROUND: Two jewel beetle species native to Europe, the cypress jewel beetle, Lamprodila (Palmar, Ovalisia) festiva L. (Buprestidae, Coleoptera), and the sinuate pear tree borer, Agrilus sinuatus Olivier (Buprestidae, Coleoptera), are key pests of ornamental thuja and junipers and of orchard and ornamental rosaceous trees, respectively. Although chemical control measures are available, due to the beetles' small size, agility, and cryptic lifestyle at the larval stage, efficient tools for their detection and monitoring are missing. Consequently, by the time emerging jewel beetle adults are noticed, the trees are typically significantly damaged. METHODS: Thus, the aim of this study was to initiate the development of monitoring traps. Transparent, light green, and purple sticky sheets and multifunnel traps were compared in field experiments in Hungary. RESULTS: Light green and transparent sticky traps caught more L. festiva and A. sinuatus jewel beetles than non-sticky multifunnel traps, regardless of the larger size of the colored surface of the funnel traps. CONCLUSIONS: Although light green sticky sheets turned out to be optimal for both species, using transparent sheets can reduce catches of non-target insects. The key to the effectiveness of sticky traps, despite their reduced suitability for quantitative comparisons, may lie in the behavioral responses of the beetles to the optical features of the traps.

14.
J Exp Biol ; 215(Pt 5): 736-45, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22323196

RESUMO

The characteristic striped appearance of zebras has provoked much speculation about its function and why the pattern has evolved, but experimental evidence is scarce. Here, we demonstrate that a zebra-striped horse model attracts far fewer horseflies (tabanids) than either homogeneous black, brown, grey or white equivalents. Such biting flies are prevalent across Africa and have considerable fitness impact on potential mammalian hosts. Besides brightness, one of the likely mechanisms underlying this protection is the polarization of reflected light from the host animal. We show that the attractiveness of striped patterns to tabanids is also reduced if only polarization modulations (parallel stripes with alternating orthogonal directions of polarization) occur in horizontal or vertical homogeneous grey surfaces. Tabanids have been shown to respond strongly to linearly polarized light, and we demonstrate here that the light and dark stripes of a zebra's coat reflect very different polarizations of light in a way that disrupts the attractiveness to tabanids. We show that the attractiveness to tabanids decreases with decreasing stripe width, and that stripes below a certain size are effective in not attracting tabanids. Further, we demonstrate that the stripe widths of zebra coats fall in a range where the striped pattern is most disruptive to tabanids. The striped coat patterns of several other large mammals may also function in reducing exposure to tabanids by similar mechanisms of differential brightness and polarization of reflected light. This work provides an experimentally supported explanation for the underlying mechanism leading to the selective advantage of a black-and-white striped coat pattern.


Assuntos
Dípteros/fisiologia , Equidae/anatomia & histologia , Equidae/parasitologia , Interações Hospedeiro-Parasita , Animais , Luz
15.
Naturwissenschaften ; 99(5): 407-16, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22580753

RESUMO

Aquatic insects find their habitat from a remote distance by means of horizontal polarization of light reflected from the water surface. This kind of positive polarotaxis is governed by the horizontal direction of polarization (E-vector). Tabanid flies also detect water by this kind of polarotaxis. The host choice of blood-sucking female tabanids is partly governed by the linear polarization of light reflected from the host's coat. Since the coat-reflected light is not always horizontally polarized, host finding by female tabanids may be different from the established horizontal E-vector polarotaxis. To reveal the optical cue of the former polarotaxis, we performed choice experiments in the field with tabanid flies using aerial and ground-based visual targets with different degrees and directions of polarization. We observed a new kind of polarotaxis being governed by the degree of polarization rather than the E-vector direction of reflected light. We show here that female and male tabanids use polarotaxis governed by the horizontal E-vector to find water, while polarotaxis based on the degree of polarization serves host finding by female tabanids. As a practical by-product of our studies, we explain the enigmatic attractiveness of shiny black spheres used in canopy traps to catch tabanids.


Assuntos
Comportamento Animal/fisiologia , Sinais (Psicologia) , Dípteros/fisiologia , Luz , Água , Animais , Feminino , Masculino
16.
J Opt Soc Am A Opt Image Sci Vis ; 29(9): 1965-76, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23201954

RESUMO

The function of the central core in lenses of certain schizochroal-eyed trilobites is unknown. To understand the possible optical function(s) of this central core, we performed computational ray-tracing on the lens in the schizochroal compound eyes of a Silurian Dalmanites trilobite. We computed the intensity of light focused by the lens versus the distance from the lower lens surface along the optical axis as functions of the refractive indices n(lu) and n(cc) of the lower lens unit and the central core. We determined those values of n(lu) and n(cc) that ensure that the studied central-cored trilobite lens is monofocal, bifocal, or trifocal. The sharpness (as the measure of the correction for spherical aberration) of these focal points was quantitatively studied. We show here that one of the possible optical functions of the central core could be the correction for spherical aberration, independently of the number (1, 2, or 3) of focal points. Another possible optical function of the core could be to ensure bifocality of the lens. In this case the peripheral lens region could have a given focal length and the central lens region could possess a longer or shorter focal length, if the refractive index n(cc) of the core is smaller or larger than the refractive index n(lu) of the upper lens unit. Finally, trifocality of the lenses can be considered only as a theoretical option, but by no means an optically optimally functioning possibility.


Assuntos
Artrópodes/fisiologia , Cristalino/fisiologia , Fenômenos Ópticos , Animais
17.
Front Plant Sci ; 13: 842560, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371122

RESUMO

Mature sunflower (Helianthus annuus) inflorescences, which no longer follow the Sun, face the eastern celestial hemisphere. Whether they orient toward the azimuth of local sunrise or the geographical east? It was recently shown that they absorb maximum light energy if they face almost exactly the geographical east, and afternoons are usually cloudier than mornings. However, the exact average and standard deviation (SD) of the azimuth angle of the normal vector of mature sunflower inflorescences have never been measured on numerous individuals. It is imaginable that they prefer the direction of sunrise rather than that of the geographical east. To decide between these two photobiological possibilities, we photographed mature inflorescences of 14 sunflower plantations using a drone and determined the average and SD of the azimuth angle of the normal vector of 2,800 sunflower heads. We found that the average azimuth αinflorescence = 89.5° ± 42.8° (measured clockwise from the geographical north) of inflorescences practically coincided with the geographical eastern direction (αeast = 90°) instead of the azimuth of local sunrise αsunrise = 56.14° - 57.55°. Although the SD of the orientation of individual inflorescences was large (± 42.8°), our finding experimentally corroborated the earlier theoretical prediction that the energetically ideal azimuth of sunflower inflorescences is east, if mornings are usually less cloudy than afternoons, which is typical for the domestication region of H. annuus. However, the average orientation of inflorescences of two plantations in hilly landscapes more or less differed from that of the majority of plantations in plane landscapes. The reason for this deviation may be that the illumination conditions in hilly sites more or less differed from those in plane landscapes. Furthermore, in a plantation, we observed a group of south-facing inflorescences that were in shadow for about 5 h both after sunrise and before sunset. This southern orientation can be explained by the southern maximum of total light energy absorbed by the partly shadowed inflorescences during the day, as computed by our software integrating both the diffuse skylight and the direct sunlight received by sunflower inflorescences.

18.
Sci Rep ; 11(1): 12770, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140606

RESUMO

Certain fungus gnats, like Lycoriella ingenua are notorious pests in agriculture, especially in mushroom production. While larvae cause mainly direct crop damage, adults are vectors of several dangerous fungal pathogens. To promote the development of pesticide-free management methods, such as light trapping, we measured the spectral sensitivity of L. ingenua compound eyes with electroretinography and performed two different behavioural experiments to reveal the wavelength dependence of phototaxis in this species. The spectral sensitivity of the compound eyes is bimodal with peaks at 370 nm (UV) and 526 nm (green). Behavioural experiments showed that attraction to light as a function of wavelength depends on light intensity. In our first experiment, where the minimal photon flux (105-109 photons/cm2/s) needed for eliciting a phototactic response was determined wavelength by wavelength, phototaxis was strongest in the green spectral range (~526 nm). In the other behavioural experiment, where wavelength preference was tested under a higher but constant light intensity (~1013 photons/cm2/s), the highest attraction was elicited by UV wavelengths (398 nm). Our results suggest that both UV and green are important spectral regions for L. ingenua thus we recommend to use both UV (~370-398 nm) and green (~526 nm) for trapping these insects.


Assuntos
Agaricales/fisiologia , Dípteros/efeitos da radiação , Controle de Insetos , Luz , Animais , Comportamento Animal/efeitos da radiação , Eletrorretinografia , Estimulação Luminosa , Fototaxia/efeitos da radiação
19.
New Phytol ; 185(4): 979-87, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20070538

RESUMO

*It is a widespread belief that plants must not be watered in the midday sunshine, because water drops adhering to leaves can cause leaf burn as a result of the intense focused sunlight. The problem of light focusing by water drops on plants has never been thoroughly investigated. *Here, we conducted both computational and experimental studies of this phyto-optical phenomenon in order to clarify the specific environmental conditions under which sunlit water drops can cause leaf burn. *We found that a spheroid drop at solar elevation angle theta approximately 23 degrees, corresponding to early morning or late afternoon, produces a maximum intensity of focused sunlight on the leaf outside the drop's imprint. Our experiments demonstrated that sunlit glass spheres placed on horizontal smooth Acer platanoides (maple) leaves can cause serious leaf burn on sunny summer days. *By contrast, sunlit water drops, ranging from spheroid to flat lens-shaped, on horizontal hairless leaves of Ginkgo biloba and Acer platanoides did not cause burn damage. However, we showed that highly refractive spheroid water drops held 'in focus' by hydrophobic wax hairs on leaves of Salvinia natans (floating fern) can indeed cause sunburn because of the extremely high light intensity in the focal regions, and the loss of water cooling as a result of the lack of intimate contact between drops and the leaf tissue.


Assuntos
Fenômenos Ópticos , Doenças das Plantas , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/efeitos da radiação , Luz Solar , Água/farmacologia , Absorção/efeitos dos fármacos , Absorção/efeitos da radiação , Acer/efeitos dos fármacos , Acer/efeitos da radiação , Gleiquênias/efeitos dos fármacos , Gleiquênias/efeitos da radiação , Sorbus/efeitos dos fármacos , Sorbus/efeitos da radiação , Temperatura , Fatores de Tempo
20.
Conserv Biol ; 24(6): 1644-53, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20455911

RESUMO

Human-made objects (e.g., buildings with glass surfaces) can reflect horizontally polarized light so strongly that they appear to aquatic insects to be bodies of water. Insects that lay eggs in water are especially attracted to such structures because these insects use horizontal polarization of light off bodies of water to find egg-laying sites. Thus, these sources of polarized light can become ecological traps associated with reproductive failure and mortality in organisms that are attracted to them and by extension with rapid population declines or collapse. Solar panels are a new source of polarized light pollution. Using imaging polarimetry, we measured the reflection-polarization characteristics of different solar panels and in multiple-choice experiments in the field we tested their attractiveness to mayflies, caddis flies, dolichopodids, and tabanids. At the Brewster angle, solar panels polarized reflected light almost completely (degree of polarization d ≈ 100%) and substantially exceeded typical polarization values for water (d ≈ 30-70%). Mayflies (Ephemeroptera), stoneflies (Trichoptera), dolichopodid dipterans, and tabanid flies (Tabanidae) were the most attracted to solar panels and exhibited oviposition behavior above solar panels more often than above surfaces with lower degrees of polarization (including water), but in general they avoided solar cells with nonpolarizing white borders and white grates. The highly and horizontally polarizing surfaces that had nonpolarizing, white cell borders were 10- to 26-fold less attractive to insects than the same panels without white partitions. Although solar panels can act as ecological traps, fragmenting their solar-active area does lessen their attractiveness to polarotactic insects. The design of solar panels and collectors and their placement relative to aquatic habitats will likely affect populations of aquatic insects that use polarized light as a behavioral cue.


Assuntos
Fontes de Energia Elétrica , Insetos/fisiologia , Luz , Oviposição , Animais , Desenho de Equipamento , Feminino , Dinâmica Populacional , Energia Solar , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA