Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Bioorg Med Chem Lett ; 28(10): 1887-1891, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29655979

RESUMO

During the course of our research efforts to develop potent and selective AKT inhibitors, we discovered enatiomerically pure substituted dihydropyridopyrimidinones (DHP) as potent inhibitors of protein kinase B/AKT with excellent selectivity against ROCK2. A key challenge in this program was the poor physicochemical properties of the initial lead compound 5. Integration of structure-based drug design and physical properties-based design resulted in replacement of a highly hydrophobic poly fluorinated aryl ring by a simple trifluoromethyl that led to identification of compound 6 with much improved physicochemical properties. Subsequent SAR studies led to the synthesis of new pyran analog 7 with improved cell potency. Further optimization of pharmacokintetics properties by increasing permeability with appropriate fluorinated alkyl led to compound 8 as a potent, selective AKT inhibitors that blocks the phosphorylation of GSK3ß in vivo and had robust, dose and concentration dependent efficacy in the U87MG tumor xenograft model.


Assuntos
Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Pirimidinonas/química , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Cristalografia por Raios X , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Camundongos , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinonas/farmacologia , Pirimidinonas/uso terapêutico , Estereoisomerismo , Relação Estrutura-Atividade , Transplante Heterólogo
2.
Xenobiotica ; 48(4): 382-399, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28436712

RESUMO

1. The disposition and metabolism of galunisertib (LY2157299 monohydrate, a TGF-ßRI Kinase/ALK5 Inhibitor) was characterized following a single oral dose of 150 mg of [14C]-galunisertib (100 µCi) to six healthy human subjects. 2. The galunisertib plasma half-life was 8.6 h, while the 14C half-life was 10.0 h. Galunisertib was abundant in circulation (40.3% of the 14C AUC024 h), with 7 additional metabolites detected in plasma. Two metabolites LSN3199597 (M5, mono-oxidation), and M4 (glucuronide of M3) were the most abundant circulating metabolites (10.7 and 9.0% of the 14C AUC024 h respectively). The pharmacological activity of LSN3199597 was tested and found to be significantly less potent than galunisertib. 3. The dose was recovered in feces (64.5%) and in urine (36.8%). Galunisertib was cleared primarily by metabolism, based on low recovery of parent in excreta (13.0% of dose). Due to the slow in vitro metabolism of galunisertib in suspended hepatocytes, a long term hepatocyte system was used to model the human excretion profile. 4. Expressed cytochromes P450 and hepatocytes indicated clearance was primarily CYP3A4-mediated. Mechanistic static modeling that incorporated small non-CYP-mediated metabolic clearance and renal clearance components predicted an AUC ratio of 4.7 for the effect of itraconazole, a strong CYP3A4 inhibitor, on galunisertib.


Assuntos
Radioisótopos de Carbono , Inibidores do Citocromo P-450 CYP3A , Itraconazol , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirazóis , Quinolinas , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Administração Oral , Adulto , Idoso , Inibidores do Citocromo P-450 CYP3A/administração & dosagem , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Fezes , Feminino , Humanos , Itraconazol/administração & dosagem , Itraconazol/farmacocinética , Masculino , Pessoa de Meia-Idade , Pirazóis/administração & dosagem , Pirazóis/farmacocinética , Quinolinas/administração & dosagem , Quinolinas/farmacocinética , Receptor do Fator de Crescimento Transformador beta Tipo I , Urina
3.
Xenobiotica ; 45(12): 1081-91, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25946562

RESUMO

1. Nuclear magnetic resonance (NMR), a non-selective and inherently quantitative method, has not been widely used as a quantitative tool for characterizing the disposition of lead molecules prior to clinical development. As a test case, we have chosen a fluoropyrimidine compound in lead optimization phase and evaluated its disposition following oral administration to rats using 19F NMR. 2. Urine, bile and feces from individual rats were profiled and the amount of dose eliminated in each matrix was calculated. The results indicated that, in male rats, the mean dose eliminated over 0-48 h was 40%, with 28% in urine, 9% in bile and 3% in feces. In female rats, the mean dose recovered in excreta over the same period was 55%, with 40% in urine, 8% in bile and 7% in feces. 3. In addition, plasma from rats and plasma from toxicology study in dogs were also profiled and exposure of circulating entities was determined. Plasma exposure determined by 19F NMR was in good agreement with those determined by conventional LC-MS/MS method, suggesting quantitative 19F NMR can be reliably used to estimate single dose or steady-state systemic exposure of circulating entities in animals and humans.


Assuntos
Descoberta de Drogas/métodos , Radioisótopos de Flúor/farmacocinética , Espectroscopia de Ressonância Magnética/métodos , Animais , Bile/química , Biotransformação , Cães , Fezes/química , Feminino , Humanos , Marcação por Isótopo , Masculino , Pirimidinas/farmacocinética , Pirimidinas/toxicidade , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
4.
J Pharmacol Toxicol Methods ; 47(3): 161-8, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12628307

RESUMO

INTRODUCTION: Glucuronidation by the uridine diphosphate glucuronosyltransferases (UGTs) plays a pivotal role in the clearance mechanism of both xenobiotics and endobiotics. The detection of glucuronides at low micromolar concentrations is required to accurately model in vitro enzyme kinetics and in vivo pharmacokinetics. However, relatively few glucuronides are currently available as standards for developing liquid chromatography and mass spectroscopy (LC/MS) bioanalytical methods. METHODS: The glucuronidation capacity of hepatic microsomes prepared from rat (RLM), dog (DLM), monkey (MLM), and human (HLM) was examined for five xenobiotic substrates. In each case, glucuronide standards were produced using the enzyme source most efficient for the production of that specific glucuronide. RESULTS: Dog hepatic microsomes were used to produce glucuronides for anthraflavic acid (yield: 14 mg), buprenorphine (yield: 14 mg), and octylgallate (total yield: 13 mg), whereas propofol glucuronide (yield: 20 mg), and ethinylestradiol glucuronide (yield: 8 mg) were prepared using HLM. All glucuronides were characterized by LC/MS/MS and nuclear magnetic resonance (NMR) spectroscopy. DISCUSSION: The multimilligram quantities of glucuronide standards produced by this method have many applications throughout drug discovery and toxicology. In addition to allowing the quantification of glucuronide formation from in vitro and in vivo studies, the authentic standards produced could also be used to assess potential pharmacological or toxicological effects of metabolites.


Assuntos
Ácido Gálico/análogos & derivados , Glucuronídeos/biossíntese , Microssomos Hepáticos/metabolismo , Padrões de Referência , Xenobióticos/metabolismo , Animais , Antraquinonas/metabolismo , Buprenorfina/metabolismo , Cromatografia Líquida de Alta Pressão , Cães , Etinilestradiol/metabolismo , Ácido Gálico/metabolismo , Glucuronídeos/análise , Glucuronosiltransferase/metabolismo , Haplorrinos , Humanos , Espectroscopia de Ressonância Magnética , Propofol/metabolismo , Ratos
5.
J Pharmacol Exp Ther ; 322(2): 843-51, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17502430

RESUMO

Indoline derivatives possess therapeutic potential within a variety of drug candidates. In this study, we found that indoline is aromatized by cytochrome P450 (P450) enzymes to produce indole through a novel dehydrogenation pathway. The indole products can potentially be bioactivated to toxic intermediates through an additional dehydrogenation step. For example, 3-substituted indoles like 3-methylindole and zafirlukast [4-(5-cyclopentyloxy-carbonylamino-1-methyl-indol-3-ylmethyl)-3-methoxy-N-o-tolylsulfonylbenzamide] are dehydrogenated to form 3-methyleneindolenine electrophiles, which react with protein and/or DNA nucleophilic residues to cause toxicities. Another potentially significant therapeutic consequence of indoline aromatization is that the product indoles might have dramatically different therapeutic potency than the parent indolines. In this study, indoline was indeed efficiently aromatized by human liver microsomes and by several P450s, but not by flavin-containing monooxygenase (FMO) 3. CYP3A4 had the highest aromatase activity. Four additional indoline metabolites [2,3,4,7-tetrahydro-4,5-epoxy-1H-indole (M1); N-hydroxyindole (M2), N-hydroxyindoline (M3), and M4 ([1,4,2,5]dioxadiazino[2,3-a:5,6-a']diindole)] were characterized; none was a metabolite of indole. M1 was an arene oxide from P450 oxidation, and M2, M3, and M4 were produced by FMO3. Our data indicated that indoline was oxidized to M3 and then to an intermediate indoline nitrone, which tautomerized to form M2, and subsequently dimerized to a di-indoline. This dimer was immediately oxidized by FMO3 or atmospheric oxygen to the final product, M4. No evidence was found for the P450-mediated production of an aliphatic alcohol from indoline that might dehydrate to produce indole. Therefore, P450 enzymes catalyze the novel "aromatase" metabolism of indoline to produce indole. The aromatase mechanism does not seem to occur through N-oxidation or dehydration of an alcohol but rather through a formal dehydrogenation pathway.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Indóis/metabolismo , Microssomos Hepáticos/metabolismo , Hidrocarboneto de Aril Hidroxilases/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2A6 , Citocromo P-450 CYP2B6 , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2C8 , Citocromo P-450 CYP2C9 , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450/genética , Glutationa/metabolismo , Humanos , Indóis/química , Cinética , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Microssomos Hepáticos/enzimologia , Oxigenases de Função Mista/metabolismo , Estrutura Molecular , Oxirredução , Oxirredutases N-Desmetilantes/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Proteínas Recombinantes/metabolismo , Espectrofotometria Ultravioleta
6.
Drug Metab Dispos ; 34(8): 1317-27, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16679390

RESUMO

Clinical outcomes of vincristine therapy, both neurotoxicity and efficacy, are unpredictable, and the reported pharmacokinetics of vincristine have considerable interindividual variability. In vitro and in vivo data support a dominant role for CYP3A enzymes in the elimination of vincristine. Consequently, genetic polymorphisms in cytochrome P450 (P450) expression may contribute to the interindividual variability in clinical response, but the contributions of individual P450s and the primary pathways of vincristine metabolism have not been defined. In the present study, vincristine was incubated with a library of cDNA-expressed P450s, and the major oxidative metabolites were identified. CYP3A4 and CYP3A5 were the only P450s to support substantial loss of parent drug and formation of the previously unidentified, major metabolite (M1). The structure of M1, arising as a result of an oxidative cleavage of the piperidine ring of the dihydro-hydroxycatharanthine unit of vincristine, was conclusively established after conversion to suitable derivatives followed by spectroscopic analysis, and a new pathway for vincristine metabolism is proposed. CYP3A5 was more efficient in catalyzing the formation of M1 compared with CYP3A4 (9- to 14-fold higher intrinsic clearance for CYP3A5). The formation of M1 was stimulated (3-fold) by the presence of coexpressed cytochrome b5, but the relative efficiencies of M1 formation by CYP3A4 and CYP3A5 were unaffected. Our findings demonstrate that in contrast to most CYP3A biotransformations, the oxidation of vincristine is considerably more efficient with CYP3A5 than with CYP3A4. We conclude that common genetic polymorphisms in CYP3A5 expression may contribute to the interindividual variability in the systemic elimination of vincristine.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Vincristina/metabolismo , Animais , Antineoplásicos Fitogênicos/metabolismo , Humanos , Técnicas In Vitro , Insetos , Microssomos/metabolismo
7.
Chem Res Toxicol ; 15(2): 240-8, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11849051

RESUMO

The antitumor agent sulofenur (LY186641), which has shown promising activity against a wide range of cancers, causes hemolytic anemia and methemoglobinemia at dose-limiting toxicities. The antitumor and toxicological mechanism(s) of action of the drug is (are) not well understood, but unlike other antineoplastic agents, sulofenur does not interfere with DNA, RNA, or protein synthesis, or with polynucleotide function. In the present study, we evaluated the hypothesis that sulofenur undergoes bioactivation in vivo to generate p-chlorophenyl isocyanate (CPIC), which could carbamoylate biological macromolecules directly or form a conjugate with glutathione (GSH) which would serve as a latent form of CPIC. The objectives of this study, therefore, were to determine if the GSH and N-acetylcysteine conjugates of CPIC were excreted into bile and urine, respectively, after an i.p. dose of sulofenur to rats. In addition, the chemical stability and thiol exchange properties of these S-linked conjugates were determined. The results of this study indicate that sulofenur does undergo metabolism in vivo to yield the GSH conjugate of CPIC, and that this conjugation reaction is reversible and subject to thiol exchange in buffered aqueous solution (pH 7.4, 37 degrees C). In contrast, sulofenur itself was stable under these same conditions, even in the presence of GSH and glutathione-S-transferase (GST), thus raising the possibility that bioactivation of sulofenur is necessary for liberation of CPIC. These findings suggest that the generation of this isocyanate in vivo and subsequent carbamoylation of biological macromolecules may play a role in the toxicity and/or antitumor activity of sulofenur and related diarylsulfonylureas.


Assuntos
Antineoplásicos/metabolismo , Glutationa/metabolismo , Isocianatos/metabolismo , Compostos de Sulfonilureia/metabolismo , Animais , Masculino , Ratos , Ratos Sprague-Dawley
8.
Drug Metab Dispos ; 32(9): 966-72, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15319338

RESUMO

Phase I oxidative metabolism of nitrogen-containing drug molecules to their corresponding N-oxides is a common occurrence. There are instances where liquid chromatography/tandem mass spectometry techniques are inadequate to distinguish this pathway from other oxidation processes, including C-hydroxylations and other heteroatom oxidations, such as sulfur to sulfoxide. Therefore, the purpose of the present study was to develop and optimize an efficient and practical chemical method to selectively convert N-oxides to their corresponding amines suitable for drug metabolism applications. Our results indicated that efficient conversion of N-oxides to amines could be achieved with TiCl(3) and poly(methylhydrosiloxane). Among them, we found TiCl(3) to be a facile and easy-to-use reagent, specifically applicable to drug metabolism. There are a few reports describing the use of TiCl(3) to reduce N-O bonds in drug metabolism studies, but this methodology has not been widely used. Our results indicated that TiCl(3) is nearly as efficient when the reductions were carried out in the presence of biological matrices, including plasma and urine. Finally, we have shown a number of examples where TiCl(3) can be successfully used to selectively reduce N-oxides in the presence of sulfoxides and other labile groups.


Assuntos
Aminas/metabolismo , Óxidos N-Cíclicos/metabolismo , Preparações Farmacêuticas/metabolismo , Animais , Catálise , Cromatografia Líquida , Cães , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Furanos/química , Furanos/metabolismo , Hidroxilação/efeitos dos fármacos , Isomerismo , Isoquinolinas/química , Isoquinolinas/metabolismo , Espectrometria de Massas , Estrutura Molecular , Oxirredução/efeitos dos fármacos , Paládio/química , Piridazinas/metabolismo , Ratos , Albumina Sérica/química , Albumina Sérica/metabolismo , Siloxanas/metabolismo , Sulfóxidos/metabolismo , Temperatura , Fatores de Tempo , Titânio/metabolismo , Alcaloides de Vinca/sangue , Alcaloides de Vinca/urina , Água
9.
Chem Res Toxicol ; 16(3): 336-49, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12641434

RESUMO

Capsaicin is a common dietary constituent and a popular homeopathic treatment for chronic pain. Exposure to capsaicin has been shown to cause various dose-dependent acute physiological responses including the sensation of burning and pain, respiratory depression, and death. In this study, the P450-dependent metabolism of capsaicin by recombinant P450 enzymes and hepatic and lung microsomes from various species, including humans, was determined. A combination of LC/MS, LC/MS/MS, and LC/NMR was used to identify several metabolites of capsaicin that were generated by aromatic (M5 and M7) and alkyl hydroxylation (M2 and M3), O-demethylation (M6), N- (M9) and alkyl dehydrogenation (M1 and M4), and an additional ring oxygenation of M9 (M8). Dehydrogenation of capsaicin was a novel metabolic pathway and produced unique macrocyclic, diene, and imide metabolites. Metabolism of capsaicin by microsomes was inhibited by the nonselective P450 inhibitor 1-aminobenzotriazole (1-ABT). Metabolism was catalyzed by CYP1A1, 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4. Addition of GSH (2 mM) to microsomal incubations stimulated the metabolism of capsaicin and trapped several reactive electrophilic intermediates as their GSH adducts. These results suggested that reactive intermediates, which inactivated certain P450 enzymes, were produced during catalytic turnover. Comparison of the rate and types of metabolites produced from capsaicin and its analogue, nonivamide, demonstrated similar pathways in the P450-dependent metabolism of these two capsaicinoids. However, production of the dehydrogenated (M4), macrocyclic (M1), and omega-1-hydroxylated (M3) metabolites was not observed for nonivamide. These differences may be reflective of the mechanism of formation of these metabolites of capsaicin. The role of metabolism in the cytotoxicity of capsaicin and nonivamide was also assessed in cultured lung and liver cells. Lung cells were markedly more sensitive to cytotoxicity by capsaicin and nonivamide. Cytotoxicity was enhanced 5 and 40% for both compounds by 1-ABT in BEAS-2B and HepG2, respectively. These data suggested that metabolism of capsaicinoids by P450 in cells represented a detoxification mechanism (in contrast to bioactivation).


Assuntos
Brônquios/metabolismo , Capsaicina/metabolismo , Capsaicina/toxicidade , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/metabolismo , Animais , Brônquios/citologia , Brônquios/efeitos dos fármacos , Brônquios/enzimologia , Capsaicina/química , Células Cultivadas , Inibidores das Enzimas do Citocromo P-450 , Inibidores Enzimáticos/farmacologia , Glutationa/química , Glutationa/farmacologia , Cabras , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Humanos , Hidrogenação , Espectrometria de Massas/métodos , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Coelhos , Ratos , Triazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA