Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artif Organs ; 46(6): 1040-1054, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35006608

RESUMO

BACKGROUND: Synthetic tissue engineering scaffolds has poor biocompatiblity with very low angiogenic properties. Conditioning the scaffolds with functional groups, coating with biological components, especially extracellular matrix (ECM), is an excellent strategy for improving their biomechanical and biological properties. METHODS: In the current study, a composite of polycaprolactone and gelatin (PCL/Gel) was electrospun in the ratio of 70/30 and surface modified with 1% gelatin-coating (G-PCL/Gel) or plasma treatment (P-PCL/Gel). The surface modification was determined by SEM and ATR-FTIR spectroscopy, respectively. The scaffolds were cultured with fibroblast 3T3, then decellularized during freeze-thawing process to fabricate a fibroblast ECM-conditioned PCL/Gel scaffold (FC-PCL/Gel). The swelling and degaradtion as well as in vitro and in vivo biocompatibility and angiogenic properties of the scaffolds were evaluated. RESULTS: The structure of the surface-modified G-PCL/Gel and P-PCL/Gel were unique and not changed compared with the PCL/Gel scaffolds. ATR-FTIR analysis admitted the formation of oxygen-containing groups, hydroxyl and carboxyl, on the surface of the P-PCL/Gel scaffold. The SEM micrographs and DAPI staining confirmed the cell attachment and the ECM deposition on the platform and successful removal of the cells after decellularization. P-PCL/Gel showed better cell attachment, ECM secretion and deposition after decellularization compared with G-PCL/Gel. The FC-PCL/Gel was considered as an optimized scaffold for further assays in this study. The FC-PCL/Gel showed increased hydrophilic behavior and cytobiocompatibility compared with P-PCL/Gel. The ECM on the FC-PCL/Gel scaffold showed a gradual degradation during 30 days of degradation time, as a small amount of ECM remained over the FC-PCL/Gel scaffold at day 30. The FC-PCL/Gel showed significant biocompatibility and improved angiogenic property compared with P-PCL/Gel when subcutaneously implanted in a mouse animal model for 7 and 28 days. CONCLUSIONS: Our findings suggest FC-PCL/Gel as an excellent biomimetic construct with high angiogenic properties. This bioengineered construct can serve as a possible application in our future pre-clinical and clinical studies for skin regeneration.


Assuntos
Gelatina , Engenharia Tecidual , Animais , Fibroblastos , Gelatina/química , Camundongos , Poliésteres/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química
2.
J Cell Mol Med ; 25(7): 3312-3326, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33634564

RESUMO

Cancer stem cells (CSCs) are responsible for therapeutic resistance and recurrence in colorectal cancer. Despite advances in immunotherapy, the inability to specifically eradicate CSCs has led to treatment failure. Hence, identification of appropriate antigen sources is a major challenge in designing dendritic cell (DC)-based therapeutic strategies against CSCs. Here, in an in vitro model using the HT-29 colon cancer cell line, we explored the efficacy of DCs loaded with exosomes derived from CSC-enriched colonospheres (CSCenr -EXOs) as an antigen source in activating CSC-specific T-cell responses. HT-29 lysate, HT-29-EXOs and CSCenr lysate were independently assessed as separate antigen sources. Having confirmed CSCs enrichment in spheroids, CSCenr -EXOs were purified and characterized, and their impact on DC maturation was investigated. Finally, the impact of the antigen-pulsed DCs on the proliferation rate and also spheroid destructive capacity of autologous T cells was assessed. CSCenr -EXOs similar to other antigen groups had no suppressive/negative impacts on phenotypic maturation of DCs as judged by the expression level of costimulatory molecules. Notably, similar to CSCenr lysate, CSCenr -EXOs significantly increased the IL-12/IL-10 ratio in supernatants of mature DCs. CSCenr -EXO-loaded DCs effectively promoted T-cell proliferation. Importantly, T cells stimulated with CSCenr -EXOs disrupted spheroids' structure. Thus, CSCenr -EXOs present a novel and promising antigen source that in combination with conventional tumour bulk-derived antigens should be further explored in pre-clinical immunotherapeutic settings for the efficacy in hampering recurrence and metastatic spread.


Assuntos
Células Dendríticas/imunologia , Exossomos/imunologia , Imunoterapia/métodos , Células-Tronco Neoplásicas/imunologia , Esferoides Celulares/imunologia , Células Cultivadas , Células HT29 , Humanos , Interleucinas/metabolismo , Esferoides Celulares/citologia , Linfócitos T/imunologia
3.
J Cell Physiol ; 235(3): 2452-2463, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31578720

RESUMO

The development of efficient and repeatable protocols for biobanking and prolonged storage of cancer stem cells (CSCs), with minimum alterations in biological function, is valuable and desired, particularly for retrospective analysis and clinical applications. In particular, data regarding the effect of cryopreservation on CSCs's functional features is scarce. In this regard, few studies have been shown that 3D spheroid structures, which enriched for CSCs, can keep their biological phenotype and genetic profiles. Here, for the first time, we present data on cryopreservation of CT-26 colonospheres, with the focus on essential stem cell-like properties after thawing. Tumor biopsy-derived colonospheres were frozen in standard freezing media (90% fetal bovine serum + 10% dimethyl sulfoxide) and stored in liquid nitrogen for 10 months. Then, cryopreservation effect on preservation of CSCs-related features was verified using real-time polymerase chain reaction for evaluation of stemness genes and flow cytometry for the putative colorectal CSC surface biomarkers. The self-renewal capacity of thawed spheres was also compared with their fresh counterparts using serial formation assay. Finally, tumorigenic capacity of both groups was evaluated in immunocompetence mouse model. Our data indicated that postthawed colonospheres had high viability without drastic alteration in biological and structural features and maintained self-renewal potential after sequential passages. Real-time analysis showed that both fresh and frozen colonospheres displayed similar expression pattern for key stemness genes: SOX2 and OCT4. Cryopreserved spheroids expressed CD133, CD166, and DCLK1 CSCs surface biomarkers at elevated levels when compared with parental as non-cryopreserved counterparts. Our electron scanning microscopy micrographs clearly demonstrated that postthawed colonospheres retain their integrity and cell surface morphology and characteristics. We also found that both fresh and frozen spheroids were equally tumorigenic. This study represented an effective strategy for reliable storage of intact CT-26 colonospheres; this can provide researchers with a functionally reliable repository of murine colorectal CSCs for their future CSCs projects.


Assuntos
Proliferação de Células/genética , Neoplasias do Colo/metabolismo , Criopreservação/métodos , Esferoides Celulares/metabolismo , Animais , Linhagem Celular Tumoral/metabolismo , Linhagem Celular Tumoral/patologia , Autorrenovação Celular/genética , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Esferoides Celulares/patologia
4.
Cell Tissue Bank ; 14(1): 11-20, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22318652

RESUMO

The information gained from the Human Genome Project has facilitated molecular as well as cellular studies not only to find the origins of Breast Cancer (BC), but also to create novel, and effective treatments. In order to provide an infrastructure for local and international research in this area, Iranian Center for Breast Cancer (ICBC) has established a Bio-Bank (BB) for BC. This article describes the aim, structure, and activities in general, and the challenging issues confronting the bank as a model for the establishment of Bio-Banks in developing countries in particular. The methods employed by the Bank could be explained in the following categories: Blood and Tissue sampling, Preparation and Banking of collected Samples, Clinical and Histopathology data collection, Collaboration Protocol, Challenging issues, and the programs to confront the problems. During the five-year activity of the bank, 110 families were enrolled for genetic counseling, from whom 600 biologic samples were obtained, including 387 blood samples and 213 tissue samples. Of 387 blood samples, 317 (82%) were found to belong to the BC patients and the remaining 70 (18%) belonged to their available relatives. The number of samples increased over the study period partly as a result of the programs designed to confront the problems. During the study period, there were some finished research studies using the samples of BB, and many other studies which are still ongoing. ICBC-BB is a model of biologic sample banking which provides a significant number of biological samples for local and international collaborative research projects regarding molecular and cellular aspects of BC. In establishing the ICBC-BB we have experienced problems and challenges, some general and some local. Some were expected and others not, but we have identified solutions.


Assuntos
Neoplasias da Mama/patologia , Bancos de Tecidos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/sangue , Neoplasias da Mama/genética , Comportamento Cooperativo , Eletroforese em Gel de Ágar , Etnicidade , Feminino , Aconselhamento Genético , Humanos , Irã (Geográfico) , Pessoa de Meia-Idade
5.
J Cancer Res Clin Oncol ; 149(7): 4101-4116, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36040667

RESUMO

BACKGROUND: Cancer stem cells (CSCs), a rare sub-fraction of tumor cells, with the capability of self-renewal and strong oncogenicity are tightly responsible for chemo and radio resistance and tumor metastasis in colorectal cancer. Hence, CSCs targeting would improve the efficacy of therapeutic strategies and clinical outcomes. METHODS: Here, using three-dimensional CSC spheroids and syngeneic mice model, we evaluated the cancer preventive impact of CSCs-based vaccination. CSCs enrichment was performed via colonosphere formation from CT-26 cell line and CT-26-derived tumor biopsy and characterized by confirming high expression of key stemness genes (OCT4, SOX2, and NANOG) and CSC-related surface biomarkers (CD166, DCLK1, and CD133) via real-time PCR and flow cytometry, respectively. Then, the stemness phenotype and self-renewal in CSC-enriched spheroids were further confirmed by showing serial sphere formation capacity, clonogenicity potential, and enhanced in vivo tumorigenic capacity compared to their parental counterparts. CSCs lysates were used as vaccines in prophylactic settings compared to the parental cell lysate and PBS groups. RESULT: Immunization of syngeneic mice with CSCs lysates was effective in the prevention of tumor establishment and significantly decreased tumor growth rate accompanied by an improvement in survival rate in tumor-bearing mice compared to groups subjected to parental cells lysate and PBS. These results, for the first time, showed that mice immunized with cell lysate from tumor biopsy-derived spheroids are resistant to tumor induction. Immunofluorescence staining indicated that only the serum antibodies from CSC-vaccinated mice reacted with colonospheres. CONCLUSIONS: These findings represent CSCs lysate-based vaccination as a potential approach to hampering immunotherapy failure of colorectal cancer which along with other traditional therapies may effectively apply to prevent the establishment of aggressive tumors harboring stemness features.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Camundongos , Animais , Neoplasias do Colo/metabolismo , Linhagem Celular Tumoral , Adenocarcinoma/patologia , Modelos Animais de Doenças , Células-Tronco Neoplásicas/metabolismo , Vacinação , Proliferação de Células
6.
Expert Rev Mol Diagn ; : 1-15, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36346387

RESUMO

BACKGROUND: SET and MYND domain-containing protein (SMYD) family with methyltransferase activity is involved in cancer progression. This novel meta-analysis aimed to evaluate the association of SMYD family with the clinical and survival outcomes in solid cancer patients. METHODS: We systematically searched Embase, PubMed, Scopus and Web of Science to select relevant articles. Hazard ratios (HRs), odds ratios (ORs), and 95% confidence intervals were extracted. Heterogeneity was evaluated by chi-square-based Q and I2 tests, while publication bias by funnel plots and Egger's test. RESULTS: Thirty-two articles (4,826 patients) met inclusion criteria. SMYD2/3 overexpression was statistically associated with poor overall survival (HR = 1.794, P < 0.001), disease/relapse/progression-free survival (HR = 2.114, P < 0.001), disease/cancer-specific survival (HR = 3.220, P = 0.003), larger tumor size (OR = 1.963, P < 0.001), advanced TNM stage (OR = 2.066, P < 0.001), lymph node metastasis (OR = 2.054, P < 0.001), and distant metastasis (OR = 1.978, P = 0.004). Subgroup analysis showed more significant association between SMYD2 overexpression and reduced survival outcomes than that in SMYD3. Conversely, the relationship between SMYD3 and various clinicopathologic factors was stronger compared to SMYD2. CONCLUSION: Enhanced SMYD2/3 expression may be an unfavorable clinical prognostic factor in different solid cancer types.

7.
Cancer Biomark ; 33(3): 277-289, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34958000

RESUMO

BACKGROUND: Isoform-specific function of doublecortin-like kinase 1 (DCLK1) has highlighted the key role of the DCLK1-S (short isoform) in the maintenance, progression, and invasion of the tumor. OBJECTIVE: This study was designed to produce an anti-DCLK1-S polyclonal antibody to evaluate DCLK1-S in human colorectal cancer (CRC) specifically. METHODS: The expression pattern and clinical significance of DCLK1-S were assessed in a well-defined tissue microarray (TMA) series of 348 CRC and 51 adjacent normal tissues during a follow-up period of 108 months. RESULTS: Expression of DCLK1-S was significantly higher in CRC samples compared to adjacent normal samples (P< 0.001). Cytoplasmic expression of DCLK1-S was significantly higher in the tumors at the advanced stage of cancer and with poorer differentiation (P< 0.001, P= 0.02). The patients with CRC whose tumors showed higher cytoplasmic expression of DCLK1-S had worse disease-specific survival (DSS) (log-rank test, P= 0.03) and 5-year DSS rates (P= 0.01). Additionally, an improved prognostic value was observed in the patients with CRC with high DCLK1-S expression vs. its moderate expression (HR: 2.70, 95% CI: 0.98-7.38; p= 0.04) by multivariate analysis. CONCLUSIONS: Our findings strongly supported that high cytoplasmic expression of DCLK1-S compared to its moderate expression could be considered an independent prognostic factor influencing DSS.


Assuntos
Neoplasias Colorretais , Quinases Semelhantes a Duplacortina , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Isoformas de Proteínas/genética , Proteínas Serina-Treonina Quinases/genética
8.
Cancer Biomark ; 35(1): 27-45, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35662107

RESUMO

BACKGROUND: Dynamin 2 (DNM2) involved in tumor progression in various malignancies. OBJECTIVE: For the first time, we evaluated DNM2 expression pattern, its association with clinicopathological characteristics and survival outcomes in RCC subtypes. METHODS: We evaluated the DNM2 expression pattern in RCC tissues as well as adjacent normal tissue using immunohistochemistry on tissue microarray (TMA) slides. RESULTS: Our findings revealed increased DNM2 expression in RCC samples rather than in adjacent normal tissues. The results indicated that there was a statistically significant difference between cytoplasmic expression of DNM2 among subtypes of RCC in terms of intensity of staining, percentage of positive tumor cells, and H-score (P= 0.024, 0.049, and 0.009, respectively). The analysis revealed that increased cytoplasmic expression of DNM2 in ccRCC is associated with worse OS (log rank: P= 0.045), DSS (P= 0.049), and PFS (P= 0.041). Furthermore, cytoplasmic expression of DNM2 was found as an independent prognostic factor affecting DSS and PFS in multivariate analysis. CONCLUSIONS: Our results indicated that DNM2 cytoplasmic expression is associated with tumor aggressiveness and poor outcomes. DNM2 could serve as a promising prognostic biomarker and therapeutic target in patients with ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/metabolismo , Dinamina II/genética , Humanos , Neoplasias Renais/metabolismo , Prognóstico
9.
Gene ; 782: 145542, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33675953

RESUMO

Squamous cell carcinoma (SCC) is a relatively common cancer with a low survival rate, poor prognosis and no effective treatment strategy. The use of cell-free conditioned media derived from mesenchymal stem cells (CM-MSCs) has shown promising results in treating various diseases. This study aimed to evaluate the effects of CM-MSCs on proliferation and apoptosis of CAL-27 and FaDu SCC cell lines. CM derived from human bone marrow and human amniotic membrane MSCs (BM-MSCs and AM-MSCs) was used in this investigation. MTT assay demonstrated that CM-BMMSC decreased the viability of CAL-27 and FaDu cell lines, 24, 48, and 72 h after treatment. Quantitative real-time PCR indicated that mRNA expression of PCNA as a proliferative marker, and BCL-2 as an anti-apoptotic protein, decreased in both cell lines treated with CM-BMMSC. Based on the flow cytometry results, the number of positive proliferative Ki67 cells and apoptotic Annexin-V cells decreased and increased in both cell lines treated with CM-BMMSC, respectively. However, CM-AMMSC treatment had both pro-and anti-neoplastic effects in our samples and showed considerable differences between the two cell lines. Taken together, our findings demonstrated that CM-BMMSC and, to a lesser degree, CM-AMMSC decrease cell viability and proliferation and increase cell apoptosis in SCC cell lines in a time-dependent manner. However, further studies are needed, especially to evaluate the anti-tumor potential of CM-BMMSC in vivo.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Células-Tronco Mesenquimais/metabolismo , Âmnio/metabolismo , Células da Medula Óssea , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Citometria de Fluxo , Humanos , Neoplasias Hepáticas
10.
Am J Med Sci ; 361(6): 765-775, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33582157

RESUMO

BACKGROUND: Stem cell therapy is among the novel approaches for the treatment of post-myocardial infarction cardiomyopathy. This study aims to compare the effect of stromal-derived factor 1 α (SDF1α), mesenchymal stem cells (MSCs) in combination with the lentiviral production of vascular endothelial growth factor (VEGF) on infarct area, vascularization and eventually cardiac function in a rat model of myocardial infarction (MI). METHODS: The influence of SDf1α on MSCs survival was investigated. MSCs were transduced via a lentiviral vector containing VEGF. After that, the effect of mesenchymal stem cell transfection of VEGF-A165 and SDf1α preconditioning on cardiac function and scar size was investigated in five groups of MI rat models. The MSC survival, cardiac function, scar size, angiogenesis, and lymphocyte count were assessed 72 hours and 6 weeks after cell transplantation. RESULTS: SDF1α decreased the lactate dehydrogenase release in MSCs significantly. Also, the number of viable cells in the SDF1α-pretreated group was meaningfully more than the control. The left ventricular systolic function significantly enhanced in groups with p240MSC, SDF1αMSC, and VEGF-A165MSC in comparison to the control group. CONCLUSIONS: These findings suggest that SDF1α pretreatment and overexpressing VEGF in MSCs could augment the MSCs' survival in the infarcted myocardium, reduce the scar size, and improve the cardiac systolic function.


Assuntos
Quimiocina CXCL12/administração & dosagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Infarto do Miocárdio/terapia , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Células Cultivadas , Masculino , Células-Tronco Mesenquimais/fisiologia , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/fisiopatologia , Neovascularização Fisiológica/fisiologia , Ratos , Ratos Wistar , Proteínas Recombinantes/administração & dosagem
11.
J Cancer Res Ther ; 14(2): 341-344, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29516916

RESUMO

PURPOSE: Bone marrow-derived mesenchymal stem cells (MSCs) have the potential ability to differentiate into bone, muscle, fat, and cartilage lineage cells. Furthermore, MSCs are known to migrate into tumor-associated stroma of cancer. This tumor microenvironment consists of a dynamic network of growth factors, immune cells, fibroblasts, extracellular matrix, and MSCs. MSCs as nonhematopoietic stem cells affect tumor, epithelial cells by alteration proliferative capacity, morphology, and aggregation pattern of tumor cells. MATERIALS AND METHODS: This research aimed to further elucidate the MSCs effects in the progress of proliferation, cell cycle, and apoptosis in breast cancer by gene expression analysis in human breast cancer cell lines exposed to MSCs conditioned media (CM). Expression pattern of two genes, including survivin (Birc5) as anti-apoptotic gene and serine threonine kinase 15 as proliferative gene, were studied. RESULTS: Anti-apoptotic and proliferative genes were up-regulated in co-cultured breast tumor cells with MSCs-CM that correlate with tumor progression and poor prognosis. CONCLUSION: Our results and other findings indicate the interaction of breast tumor cells with MSCs through paracrine factors. Also, the applications of MSCs as therapeutic tools are facing controversial concerns.


Assuntos
Apoptose/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Células-Tronco Mesenquimais/metabolismo , Apoptose/genética , Aurora Quinase A/genética , Biomarcadores Tumorais , Neoplasias da Mama , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Inibidoras de Apoptose/genética , Células MCF-7 , Survivina
12.
Avicenna J Med Biotechnol ; 2(1): 23-35, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23407454

RESUMO

Spermatogonia are the male germ line stem cells whose life long expansion is needed for permanent production of spermatozoa. The present study was designed to examine the effect of hCG treatment on germ cell proliferation following stem cell transplantation in mice. Spermatogonial stem cells were isolated from neonatal mice testes and characterized by alkaline phosphatase, immunoreactivity and morphological analysis. hCG was injected into normal and cell transplanted mice. We then evaluated the testosterone levels and cell number in normal mice. After that, cyclin B1 gene expression was investigated in transplanted mice. Different doses of busulfan were injected to investigate the effects of chemotherapy on morphological criteria and preparation of recipient mice for transplantation. In this report we show proliferative potential of spermatogonial stem cells after cytotoxic treatment, transplantation efficiency by semi-quantitative RT-PCR, and hCG effect on stem cell regeneration in normal mice and following cell transplantation. The results indicate that spermatogonial stem cells can proliferate after transplantation, and the efficiency of their transplantation depends on hormonal treatment. Therefore, hormonal treatment after stem cell transplantation will be a powerful avenue for increasing the efficiency of transplantation and fertility restoration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA