Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 109(5): 666-681, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32608184

RESUMO

The bone regenerative capacity of synthetic calcium phosphates (CaPs) can be enhanced through the enrichment with selected metal trace ions. However, defining the optimal elemental composition required for bone formation is challenging due to many possible concentrations and combinations of these elements. We hypothesized that the ideal elemental composition exists in the inorganic phase of the bone extracellular matrix (ECM). To study our hypothesis, we first obtained natural hydroxyapatite through the calcination of bovine bone, which was then investigated its reactivity with acidic phosphates to produce CaP cements. Bioceramic scaffolds fabricated using these cements were assessed for their composition, properties, and in vivo regenerative performance and compared with controls. We found that natural hydroxyapatite could react with phosphoric acid to produce CaP cements with biomimetic trace metals. These cements present significantly superior in vivo bone regenerative performance compared with cements prepared using synthetic apatite. In summary, this study opens new avenues for further advancements in the field of CaP bone biomaterials by introducing a simple approach to develop biomimetic CaPs. This work also sheds light on the role of the inorganic phase of bone and its composition in defining the regenerative properties of natural bone xenografts.


Assuntos
Biomimética , Regeneração Óssea/efeitos dos fármacos , Fosfatos de Cálcio/farmacologia , Cerâmica/farmacologia , Metais/farmacologia , Oligoelementos/farmacologia , Animais , Cimentos Ósseos/química , Fosfatos de Cálcio/química , Bovinos , Ácido Cítrico/farmacologia , Força Compressiva , Cristalografia por Raios X , Durapatita/química , Durapatita/isolamento & purificação , Feminino , Teste de Materiais , Metais/análise , Metais/uso terapêutico , Ácidos Fosfóricos/farmacologia , Ratos , Ratos Sprague-Dawley , Espectroscopia de Infravermelho com Transformada de Fourier , Tíbia/diagnóstico por imagem , Tíbia/efeitos dos fármacos , Tíbia/lesões , Oligoelementos/análise , Oligoelementos/uso terapêutico , Microtomografia por Raio-X
2.
Acta Biomater ; 89: 343-358, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30853609

RESUMO

Immunomodulation strategies are believed to improve the integration and clinical performance of synthetic bone substitutes. One potential approach is the modification of biomaterial surface chemistry to mimic bone extracellular matrix (ECM). In this sense, we hypothesized that coating synthetic dicalcium phosphate (DCP) bioceramics with bone ECM proteins would modulate the host immune reactions and improve their regenerative performance. To test this, we evaluated the in vitro proteomic surface interactions and the in vivo performance of ECM-coated bioceramic scaffolds. Our results demonstrated that coating DCP scaffolds with bone extracts, specifically those containing calcium-binding proteins, dramatically modulated their interaction with plasma proteins in vitro, especially those relating to the innate immune response. In vivo, we observed an attenuated inflammatory response against the bioceramic scaffolds and enhanced peri-scaffold new bone formation supported by the increased osteoblastogenesis and reduced osteoclastogenesis. Furthermore, the bone extract rich in calcium-binding proteins can be 3D-printed to produce customized hydrogels with improved regeneration capabilities. In summary, bone extracts containing calcium-binding proteins can enhance the integration of synthetic biomaterials and improve their ability to regenerate bone probably by modulating the host immune reaction. This finding helps understand how bone allografts regenerate bone and opens the door for new advances in tissue engineering and bone regeneration. STATEMENT OF SIGNIFICANCE: Foreign-body reaction is an important determinant of in vivo biomaterial integration, as an undesired host immune response can compromise the performance of an implanted biomaterial. For this reason, applying immunomodulation strategies to enhance biomaterial engraftment is of great interest in the field of regenerative medicine. In this article, we illustrated that coating dicalcium phosphate bioceramic scaffolds with bone-ECM extracts, especially those rich in calcium-binding proteins, is a promising approach to improve their surface proteomic interactions and modulate the immune responses towards such biomaterials in a way that improves their bone regeneration performance. Collectively, the results of this study may provide a conceivable explanation for the mechanisms involved in presenting the excellent regenerative efficacy of natural bone grafts.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Osso e Ossos , Fosfatos de Cálcio/farmacologia , Cerâmica , Misturas Complexas/farmacologia , Hidrogéis/farmacologia , Fatores Imunológicos , Osteogênese/efeitos dos fármacos , Impressão Tridimensional , Alicerces Teciduais/química , Animais , Osso e Ossos/química , Osso e Ossos/fisiologia , Cerâmica/química , Cerâmica/farmacologia , Misturas Complexas/química , Feminino , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Ratos
3.
Materials (Basel) ; 10(2)2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28772455

RESUMO

The aim of this work was to prepare hydroxyapatite coatings (HAp) by a sol-gel method on Ti6Al4V alloy and to study the bioactivity, biocompatibility and corrosion protection behaviour of these coatings in presence of simulated body fluids (SBFs). Thermogravimetric/Differential Thermal Analyses (TG/DTA) and X-ray Diffraction (XRD) have been applied to obtain information about the phase transformations, mass loss, identification of the phases developed, crystallite size and degree of crystallinity of the obtained HAp powders. Fourier Transformer Infrared Spectroscopy (FTIR) has been utilized for studying the functional groups of the prepared structures. The surface morphology of the resulting HAp coatings was studied by Scanning Electron Microscopy (SEM). The bioactivity was evaluated by soaking the HAp-coatings/Ti6Al4V system in Kokubo's Simulated Body Fluid (SBF) applying Inductively Coupled Plasma (ICP) spectrometry. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and Alamar blue cell viability assays were used to study the biocompatibility. Finally, the corrosion behaviour of HAp-coatings/Ti6Al4V system was researched by means of Electrochemical Impedance Spectroscopy (EIS). The obtained results showed that the prepared powders were nanocrystalline HAp with little deviations from that present in the human bone. All the prepared HAp coatings deposited on Ti6Al4V showed well-behaved biocompatibility, good bioactivity and corrosion protection properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA