Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Analyst ; 149(7): 2004-2015, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38426854

RESUMO

HER2 is a crucial therapeutic target in breast cancer, and the survival rate of breast cancer patients has increased because of this receptor's inhibition. However, tumors have shown resistance to this therapeutic strategy due to oncogenic mutations that decrease the binding of several HER2-targeted drugs, including lapatinib, and confer resistance to this drug. Neratinib can overcome this drug resistance and effectively inhibit HER2 signaling and tumor growth. In the present study, we examined the efficacy of lapatinib and neratinib using breast cancer cells by Raman microscopy combined with a deep wavelet scattering-based multivariate analysis framework. This approach discriminated between control cells and drug-treated cells with high accuracy, compared to classical principal component analysis. Both lapatinib and neratinib induced changes in the cellular biochemical composition. Furthermore, the Raman results were compared with the results of several in vitro assays. For instance, drug-treated cells exhibited (i) inhibition of ERK and AKT phosphorylation, (ii) inhibition of cellular proliferation, (iii) cell-cycle arrest, and (iv) apoptosis as indicated by western blotting, real-time cell analysis (RTCA), cell-cycle analysis, and apoptosis assays. Thus, the observed Raman spectral changes are attributed to cell-cycle arrest and apoptosis. The results also indicated that neratinib is more potent than lapatinib. Moreover, the uptake and distribution of lapatinib in cells were visualized through its label-free marker bands in the fingerprint region using Raman spectral imaging. These results show the prospects of Raman microscopy in drug evaluation and presumably in drug discovery.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Lapatinib/farmacologia , Lapatinib/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Receptor ErbB-2/metabolismo , Quinazolinas/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias da Mama/patologia , Apoptose , Análise Espectral , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia
2.
Proc Natl Acad Sci U S A ; 116(19): 9380-9389, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31004059

RESUMO

Although channelrhodopsin (ChR) is a widely applied light-activated ion channel, important properties such as light adaptation, photocurrent inactivation, and alteration of the ion selectivity during continuous illumination are not well understood from a molecular perspective. Herein, we address these open questions using single-turnover electrophysiology, time-resolved step-scan FTIR, and Raman spectroscopy of fully dark-adapted ChR2. This yields a unifying parallel photocycle model integrating now all so far controversial discussed data. In dark-adapted ChR2, the protonated retinal Schiff base chromophore (RSBH+) adopts an all-trans,C=N-anti conformation only. Upon light activation, a branching reaction into either a 13-cis,C=N-anti or a 13-cis,C=N-syn retinal conformation occurs. The anti-cycle features sequential H+ and Na+ conductance in a late M-like state and an N-like open-channel state. In contrast, the 13-cis,C=N-syn isomer represents a second closed-channel state identical to the long-lived P480 state, which has been previously assigned to a late intermediate in a single-photocycle model. Light excitation of P480 induces a parallel syn-photocycle with an open-channel state of small conductance and high proton selectivity. E90 becomes deprotonated in P480 and stays deprotonated in the C=N-syn cycle. Deprotonation of E90 and successive pore hydration are crucial for late proton conductance following light adaptation. Parallel anti- and syn-photocycles now explain inactivation and ion selectivity changes of ChR2 during continuous illumination, fostering the future rational design of optogenetic tools.


Assuntos
Cátions/metabolismo , Channelrhodopsins/química , Channelrhodopsins/metabolismo , Cátions/química , Channelrhodopsins/genética , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Células HEK293 , Humanos , Isomerismo , Luz , Conformação Proteica , Prótons , Retinaldeído/química
3.
Acta Neuropathol ; 142(3): 423-448, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34115198

RESUMO

Various post-translationally modified (PTM) proteoforms of alpha-synuclein (aSyn)-including C-terminally truncated (CTT) and Serine 129 phosphorylated (Ser129-p) aSyn-accumulate in Lewy bodies (LBs) in different regions of the Parkinson's disease (PD) brain. Insight into the distribution of these proteoforms within LBs and subcellular compartments may aid in understanding the orchestration of Lewy pathology in PD. We applied epitope-specific antibodies against CTT and Ser129-p aSyn proteoforms and different aSyn domains in immunohistochemical multiple labelings on post-mortem brain tissue from PD patients and non-neurological, aged controls, which were scanned using high-resolution 3D multicolor confocal and stimulated emission depletion (STED) microscopy. Our multiple labeling setup highlighted a consistent onion skin-type 3D architecture in mature nigral LBs in which an intricate and structured-appearing framework of Ser129-p aSyn and cytoskeletal elements encapsulates a core enriched in CTT aSyn species. By label-free CARS microscopy we found that enrichments of proteins and lipids were mainly localized to the central portion of nigral aSyn-immunopositive (aSyn+) inclusions. Outside LBs, we observed that 122CTT aSyn+ punctae localized at mitochondrial membranes in the cytoplasm of neurons in PD and control brains, suggesting a physiological role for 122CTT aSyn outside of LBs. In contrast, very limited to no Ser129-p aSyn immunoreactivity was observed in brains of non-neurological controls, while the alignment of Ser129-p aSyn in a neuronal cytoplasmic network was characteristic for brains with (incidental) LB disease. Interestingly, Ser129-p aSyn+ network profiles were not only observed in neurons containing LBs but also in neurons without LBs particularly in donors at early disease stage, pointing towards a possible subcellular pathological phenotype preceding LB formation. Together, our high-resolution and 3D multicolor microscopy observations in the post-mortem human brain provide insights into potential mechanisms underlying a regulated LB morphogenesis.


Assuntos
Química Encefálica , Doença de Parkinson/metabolismo , Frações Subcelulares/metabolismo , alfa-Sinucleína/metabolismo , Idoso , Bancos de Espécimes Biológicos , Citoplasma/patologia , Citoplasma/ultraestrutura , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Humanos , Corpos de Inclusão/patologia , Corpos de Inclusão/ultraestrutura , Corpos de Lewy/metabolismo , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Neurônios/patologia , Neurônios/ultraestrutura , Processamento de Proteína Pós-Traducional , alfa-Sinucleína/genética
4.
Anal Chem ; 92(24): 15745-15756, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33225709

RESUMO

The variable configuration of Raman spectroscopic platforms is one of the major obstacles in establishing Raman spectroscopy as a valuable physicochemical method within real-world scenarios such as clinical diagnostics. For such real world applications like diagnostic classification, the models should ideally be usable to predict data from different setups. Whether it is done by training a rugged model with data from many setups or by a primary-replica strategy where models are developed on a 'primary' setup and the test data are generated on 'replicate' setups, this is only possible if the Raman spectra from different setups are consistent, reproducible, and comparable. However, Raman spectra can be highly sensitive to the measurement conditions, and they change from setup to setup even if the same samples are measured. Although increasingly recognized as an issue, the dependence of the Raman spectra on the instrumental configuration is far from being fully understood and great effort is needed to address the resulting spectral variations and to correct for them. To make the severity of the situation clear, we present a round robin experiment investigating the comparability of 35 Raman spectroscopic devices with different configurations in 15 institutes within seven European countries from the COST (European Cooperation in Science and Technology) action Raman4clinics. The experiment was developed in a fashion that allows various instrumental configurations ranging from highly confocal setups to fibre-optic based systems with different excitation wavelengths. We illustrate the spectral variations caused by the instrumental configurations from the perspectives of peak shifts, intensity variations, peak widths, and noise levels. We conclude this contribution with recommendations that may help to improve the inter-laboratory studies.

5.
Anal Chem ; 91(21): 13900-13906, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31483624

RESUMO

Cervical cancer is the fourth most common cancer in women worldwide, and early detection of its precancerous lesions can decrease mortality. Cytopathology, HPV testing, and histopathology are the most commonly used tools in clinical practice. However, these methods suffer from many limitations such as subjectivity, cost, and time. Therefore, there is an unmet clinical need to develop new noninvasive methods for the early detection of cervical cancer. Here, a novel noninvasive, fast, and label-free approach with high accuracy is presented using liquid-based cytology Pap smears. CARS and SHG/TPF imaging was performed at one wavenumber on the Pap smears from patients with specimens negative for intraepithelial lesions or malignancy (NILM), and low-grade (LSIL) and high-grade (HSIL) squamous intraepithelial lesions. The normal, LSIL, and HSIL cells were selected on the basis of the ratio of the nucleus to the cytoplasm and cell morphology. Raman spectral imaging of single cells from the same smears was also performed to provide integral biochemical information of cells. Deep convolutional neural networks (DCNNs) were trained independently with CARS, SHG/TPF, and Raman images, taking into account both morphotextural and spectral information. DCNNs based on CARS, SHG/TPF, or Raman images have discriminated between normal and cancerous Pap smears with 100% accuracy. These results demonstrate that CARS/SHG/TPF microscopy has a prospective use as a label-free imaging technique for the fast screening of a large number of cells in cytopathological samples.


Assuntos
Detecção Precoce de Câncer/métodos , Análise Espectral Raman/métodos , Neoplasias do Colo do Útero/diagnóstico , Adulto , Aprendizado Profundo , Diagnóstico por Imagem/métodos , Feminino , Humanos , Pessoa de Meia-Idade , Análise de Célula Única/métodos , Neoplasias do Colo do Útero/patologia
6.
Analyst ; 144(20): 6098-6107, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31531499

RESUMO

Raman spectroscopy can provide the biomolecular fingerprint of a cell in a label-free manner. Although a variety of clinical and biomedical applications have been demonstrated, the method remains largely a niche technology. The two main problems are the complexity of data acquisition and the complexity of data analysis. Generally, Raman measurements are performed manually and require a substantial amount of time. This, on the other hand, frequently results in a low number of samples and hence with questionable statistical evaluation. Here, we propose an automated high content screening Raman spectroscopy (HCS-RS) platform, which can perform a series of experiments without human interaction, significantly increasing the number of measured samples and making the measurement more reliable. The automated image processing of bright field images in combination with automatic spectral acquisition of the molecular fingerprint of cells exposed to different physiological conditions enables label-free high content screening applications. The performance of the developed HCS-RS platform is demonstrated by investigating the effect of panitumumab on SW48 and SW480 colorectal cancer cells with wild-type and mutated K-RAS, respectively, in a series of concentrations. Our result indicates that the increased content of panitumumab prohibits the activation of the MAP kinase of the colorectal cancer cells with wild-type K-RAS strongly, whereas there is no significant effect on the K-RAS mutated cells. Moreover, the relative amount of the panitumumab content present in the cells is determined from the Raman spectral information, which could be beneficial for personalized patient treatment.


Assuntos
Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/tratamento farmacológico , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/tratamento farmacológico , Ensaios de Triagem em Larga Escala/métodos , Panitumumabe/farmacologia , Análise de Célula Única/métodos , Análise Espectral Raman/métodos , Linhagem Celular Tumoral , Neoplasias do Colo/diagnóstico , Neoplasias Colorretais/diagnóstico , Humanos , Panitumumabe/metabolismo
7.
Angew Chem Int Ed Engl ; 57(24): 7250-7254, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29645336

RESUMO

Tyrosine kinase receptors are one of the main targets in cancer therapy. They play an essential role in the modulation of growth factor signaling and thereby inducing cell proliferation and growth. Tyrosine kinase inhibitors such as neratinib bind to EGFR and HER2 receptors and exhibit antitumor activity. However, little is known about their detailed cellular uptake and metabolism. Here, we report for the first time the intracellular spatial distribution and metabolism of neratinib in different cancer cells using label-free Raman imaging. Two new neratinib metabolites were detected and fluorescence imaging of the same cells indicate that neratinib accumulates in lysosomes. The results also suggest that both EGFR and HER2 follow the classical endosome lysosomal pathway for degradation. A combination of Raman microscopy, DFT calculations, and LC-MS was used to identify the chemical structure of neratinib metabolites. These results show the potential of Raman microscopy to study drug pharmacokinetics.


Assuntos
Lisossomos/metabolismo , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Quinolinas/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Receptor ErbB-2/metabolismo , Análise Espectral Raman
9.
Anal Chem ; 89(12): 6893-6899, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28541036

RESUMO

The current gold standard for the diagnosis of bladder cancer is cystoscopy, which is invasive and painful for patients. Therefore, noninvasive urine cytology is usually used in the clinic as an adjunct to cystoscopy; however, it suffers from low sensitivity. Here, a novel noninvasive, label-free approach with high sensitivity for use with urine is presented. Coherent anti-Stokes Raman scattering imaging of urine sediments was used in the first step for fast preselection of urothelial cells, where high-grade urothelial cancer cells are characterized by a large nucleus-to-cytoplasm ratio. In the second step, Raman spectral imaging of urothelial cells was performed. A supervised classifier was implemented to automatically differentiate normal and cancerous urothelial cells with 100% accuracy. In addition, the Raman spectra not only indicated the morphological changes that are identified by cytology with hematoxylin and eosin staining but also provided molecular resolution through the use of specific marker bands. The respective Raman marker bands directly show a decrease in the level of glycogen and an increase in the levels of fatty acids in cancer cells as compared to controls. These results pave the way for "spectral" cytology of urine using Raman microspectroscopy.


Assuntos
Carcinoma/diagnóstico , Análise Espectral Raman , Neoplasias da Bexiga Urinária/diagnóstico , Urina/citologia , Carcinoma/patologia , Núcleo Celular/química , Núcleo Celular/metabolismo , Análise por Conglomerados , Citoplasma/química , Citoplasma/metabolismo , Humanos , Microscopia Confocal , Gradação de Tumores , Neoplasias da Bexiga Urinária/patologia , Urotélio/citologia , Urotélio/patologia
10.
Anal Chem ; 87(14): 7297-304, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26075314

RESUMO

Predictions about the cellular efficacy of drugs tested in vitro are usually based on the measured responses of a few proteins or signal transduction pathways. However, cellular proteins are highly coupled in networks, and observations of single proteins may not adequately reflect the in vivo cellular response to drugs. This might explain some large discrepancies between in vitro drug studies and drug responses observed in patients. We present a novel in vitro marker-free approach that enables detection of cellular responses to a drug. We use Raman spectral imaging to measure the effect of the epidermal growth factor receptor (EGFR) inhibitor panitumumab on cell lines expressing wild-type Kirsten-Ras (K-Ras) and oncogenic K-Ras mutations. Oncogenic K-Ras mutation blocks the response to anti-EGFR therapy in patients, but this effect is not readily observed in vitro. The Raman studies detect large panitumumab-induced differences in vitro in cells harboring wild-type K-Ras as seen in A in red but not in cells with K-Ras mutations as seen in B; these studies reflect the observed patient outcomes. However, the effect is not observed when extracellular-signal-regulated kinase phosphorylation is monitored. The Raman spectra show for cells with wild-type K-Ras alterations based on the responses to panitumumab. The subcellular component with the largest spectral response to panitumumab was lipid droplets, but this effect was not observed when cells harbored K-Ras mutations. This study develops a noninvasive, label-free, in vitro vibrational spectroscopic test to determine the integral physiologically relevant drug response in cell lines. This approach opens a new field of patient-centered drug testing that could deliver superior patient therapies.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Receptores ErbB/antagonistas & inibidores , Anticorpos Monoclonais/química , Antineoplásicos/química , Receptores ErbB/química , Humanos , Análise Multivariada , Mutação , Panitumumabe , Análise Espectral Raman , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Proteínas ras/genética
11.
Analyst ; 140(7): 2360-8, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25679809

RESUMO

A major promise of Raman microscopy is the label-free detailed recognition of cellular and subcellular structures. To this end, identifying colocalization patterns between Raman spectral images and fluorescence microscopic images is a key step to annotate subcellular components in Raman spectroscopic images. While existing approaches to resolve subcellular structures are based on fluorescence labeling, we propose a combination of a colocalization scheme with subsequent training of a supervised classifier that allows label-free resolution of cellular compartments. Our colocalization scheme unveils statistically significant overlapping regions by identifying correlation between the fluorescence color channels and clusters from unsupervised machine learning methods like hierarchical cluster analysis. The colocalization scheme is used as a pre-selection to gather appropriate spectra as training data. These spectra are used in the second part as training data to establish a supervised random forest classifier to automatically identify lipid droplets and nucleus. We validate our approach by examining Raman spectral images overlaid with fluorescence labelings of different cellular compartments, indicating that specific components may indeed be identified label-free in the spectral image. A Matlab implementation of our colocalization software is available at .


Assuntos
Espaço Intracelular/metabolismo , Microscopia de Fluorescência/métodos , Análise Espectral Raman/métodos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Humanos , Gotículas Lipídicas/metabolismo
12.
Anal Bioanal Chem ; 407(27): 8321-31, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26168967

RESUMO

Mutational acquired resistance is a major challenge in cancer therapy. Somatic tumours harbouring some oncogenic mutations are characterised by a high mortality rate. Surprisingly, preclinical evaluation methods do not show clearly resistance of mutated cancers to some drugs. Here, we implemented Raman spectral imaging to investigate the oncogenic mutation resistance to epidermal growth factor receptor targeting therapy. Colon cancer cells with and without oncogenic mutations such as KRAS and BRAF mutations were treated with erlotinib, an inhibitor of epidermal growth factor receptor, in order to detect the impact of these mutations on Raman spectra of the cells. Clinical studies suggested that oncogenic KRAS and BRAF mutations inhibit the response to erlotinib therapy in patients, but this effect is not observed in vitro. The Raman results indicate that erlotinib induces large spectral changes in SW-48 cells that harbour wild-type KRAS and BRAF. These spectral changes can be used as a marker of response to therapy. HT-29 cells (BRAF mutated) and SW-480 cells (KRAS mutated) display a smaller and no significant response, respectively. However, the erlotinib effect on these cells is not observed when phosphorylation of extracellular-signal-regulated kinase and AKT is monitored by Western blot, where this phosphorylation is the conventional in vitro test. Lipid droplets show a large response to erlotinib only in the case of cells harbouring wild-type KRAS and BRAF, as indicated by Raman difference spectra. This study shows the great potential of Raman spectral imaging as an in vitro tool for detecting mutational drug resistance.


Assuntos
Antineoplásicos/farmacologia , Colo/patologia , Neoplasias do Colo/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Cloridrato de Erlotinib/farmacologia , Análise Espectral Raman/métodos , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Colo/efeitos dos fármacos , Colo/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Cloridrato de Erlotinib/uso terapêutico , Células HT29 , Humanos , Microscopia Confocal/métodos , Terapia de Alvo Molecular , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
13.
Biophys J ; 106(9): 1910-20, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24806923

RESUMO

Coherent anti-Stokes Raman scattering (CARS) is an emerging tool for label-free characterization of living cells. Here, unsupervised multivariate analysis of CARS datasets was used to visualize the subcellular compartments. In addition, a supervised learning algorithm based on the "random forest" ensemble learning method as a classifier, was trained with CARS spectra using immunofluorescence images as a reference. The supervised classifier was then used, to our knowledge for the first time, to automatically identify lipid droplets, nucleus, nucleoli, and endoplasmic reticulum in datasets that are not used for training. These four subcellular components were simultaneously and label-free monitored instead of using several fluorescent labels. These results open new avenues for label-free time-resolved investigation of subcellular components in different cells, especially cancer cells.


Assuntos
Imagem Molecular/métodos , Organelas/metabolismo , Análise Espectral Raman/métodos , Automação , Linhagem Celular Tumoral , Análise por Conglomerados , Estudos de Viabilidade , Humanos , Neoplasias Pancreáticas/patologia
14.
J Biol Chem ; 288(25): 18458-72, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23661702

RESUMO

Based on a bioinformatics study, the protein MA4561 from the methanogenic archaeon Methanosarcina acetivorans was originally predicted to be a multidomain phytochrome-like photosensory kinase possibly binding open-chain tetrapyrroles. Although we were able to show that recombinantly produced and purified protein does not bind any known phytochrome chromophores, UV-visible spectroscopy revealed the presence of a heme tetrapyrrole cofactor. In contrast to many other known cytoplasmic heme-containing proteins, the heme was covalently attached via one vinyl side chain to cysteine 656 in the second GAF domain. This GAF domain by itself is sufficient for covalent attachment. Resonance Raman and magnetic circular dichroism data support a model of a six-coordinate heme species with additional features of a five-coordination structure. The heme cofactor is redox-active and able to coordinate various ligands like imidazole, dimethyl sulfide, and carbon monoxide depending on the redox state. Interestingly, the redox state of the heme cofactor has a substantial influence on autophosphorylation activity. Although reduced protein does not autophosphorylate, oxidized protein gives a strong autophosphorylation signal independent from bound external ligands. Based on its genomic localization, MA4561 is most likely a sensor kinase of a two-component system effecting regulation of the Mts system, a set of three homologous corrinoid/methyltransferase fusion protein isoforms involved in methyl sulfide metabolism. Consistent with this prediction, an M. acetivorans mutant devoid of MA4561 constitutively synthesized MtsF. On the basis of our results, we postulate a heme-based redox/dimethyl sulfide sensory function of MA4561 and propose to designate it MsmS (methyl sulfide methyltransferase-associated sensor).


Assuntos
Proteínas Arqueais/metabolismo , Heme/metabolismo , Metano/metabolismo , Methanosarcina/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Sítios de Ligação/genética , Western Blotting , Heme/química , Methanosarcina/genética , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/metabolismo , Modelos Moleculares , Mutação , Oxirredução , Fosforilação , Fosfotransferases/química , Fosfotransferases/genética , Fosfotransferases/metabolismo , Ligação Proteica , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Análise Espectral Raman , Sulfetos/química , Sulfetos/metabolismo
15.
Analyst ; 139(5): 1155-61, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24427772

RESUMO

Targeted cancer therapies block cancer growth and spread using small molecules. Many molecular targets for an epidermal growth factor receptor (EGFR) selectively compete with the adenosine triphosphate-binding site of its tyrosine kinase domain. Detection of molecular targeted agents and their metabolites in cells/tissues by label-free imaging is attractive because dyes or fluorescent labels may be toxic or invasive. Here, label-free Raman microscopy is applied to show the spatial distribution of the molecular targeted drug erlotinib within the cell. The Raman images show that the drug is clustered at the EGFR protein at the membrane and induces receptor internalization. The changes within the Raman spectrum of erlotinib measured in cells as compared to the free-erlotinib spectrum indicate that erlotinib is metabolized within cells to its demethylated derivative. This study provides detailed insights into the drug targeting mechanism at the atomic level in cells. It demonstrates that Raman microscopy will open avenues as a non-invasive and label-free technique to investigate pharmacokinetics at the highest possible resolution in living cells.


Assuntos
Neoplasias do Colo/metabolismo , Quinazolinas/metabolismo , Análise Espectral Raman/métodos , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Cloridrato de Erlotinib , Humanos , Microscopia Confocal/métodos , Quinazolinas/uso terapêutico
16.
BMC Complement Med Ther ; 24(1): 205, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796482

RESUMO

BACKGROUND: The plant roots excrete a large number of organic compounds into the soil. The rhizosphere, a thin soil zone around the roots, is a hotspot for microbial activity, making it a crucial component of the soil ecosystem. Secondary metabolites produced by rhizospheric Sphingomonas sanguinis DM have sparked significant curiosity in investigating their possible biological impacts. METHODS: A bacterial strain has been isolated from the rhizosphere of Datura metel. The bacterium's identification, fermentation, and working up have been outlined. The ethyl acetate fraction of the propagated culture media of Sphingomonas sanguinis DM was fractioned and purified using various chromatographic techniques. The characterization of the isolated compounds was accomplished through the utilization of various spectroscopic techniques, such as UV, MS, 1D, and 2D-NMR. Furthermore, the evaluation of their antimicrobial activity was conducted using the agar well diffusion method, while cytotoxicity was assessed using the MTT test. RESULTS: The extract from Sphingomonas sanguinis DM provided two distinct compounds: n-dibutyl phthalic acid (1) and Bis (2-methyl heptyl) phthalate (2) within its ethyl acetate fraction. Furthermore, the 16S rRNA gene sequence of Sphingomonas sanguinis DM has been registered under the NCBI GenBank database with the accession number PP422198. The bacterial extract exhibited its effect against gram-positive bacteria, inhibiting Streptococcus mutans (12.6 ± 0.6 mm) and Staphylococcus aureus (10.6 ± 0.6 mm) compared to standard antibiotics. Conversely, compound 1 showed a considerable effect against phytopathogenic fungi such as Alternaria alternate (56.3 ± 10.6 mm) and Fusarium oxysporum (21.3 ± 1.5 mm) with a MIC value of 17.5 µg/mL. However, it was slightly active against Klebsiella pneumonia (11.0 ± 1.0 mm). Furthermore, compound 2 was the most active metabolite, having a significant antimicrobial efficacy against Rhizoctonia solani (63.6 ± 1.1 mm), Pseudomonas aeruginosa (16.7 ± 0.6 mm), and Alternaria alternate (20.3 ± 0.6 mm) with MIC value at 15 µg/mL. In addition, compound 2 exhibited the most potency against hepatocellular (HepG-2) and skin (A-431) carcinoma cell lines with IC50 values of 107.16 µg/mL and 111.36 µg/mL, respectively. CONCLUSION: Sphingomonas sanguinis DM, a rhizosphere bacterium of Datura metel, was studied for its phytochemical and biological characteristics, resulting in the identification of two compounds with moderate antimicrobial and cytotoxic activities.


Assuntos
Datura metel , Rizosfera , Sphingomonas , Datura metel/química , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Testes de Sensibilidade Microbiana , Raízes de Plantas/microbiologia , Antibacterianos/farmacologia , Metabolismo Secundário
17.
Bioresour Bioprocess ; 11(1): 36, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38647805

RESUMO

Cell separation using microfluidics has become an effective method to isolate biological contaminants from bodily fluids and cell cultures, such as isolating bacteria contaminants from microalgae cultures and isolating bacteria contaminants from white blood cells. In this study, bacterial cells were used as a model contaminant in microalgae culture in a passive microfluidics device, which relies on hydrodynamic forces to demonstrate the separation of microalgae from bacteria contaminants in U and W-shaped cross-section spiral microchannel fabricated by defocusing CO2 laser ablation. At a flow rate of 0.7 ml/min in the presence of glycine as bacteria chemoattractant, the spiral microfluidics devices with U and W-shaped cross-sections were able to isolate microalgae (Desmodesmus sp.) from bacteria (E. coli) with a high separation efficiency of 92% and 96% respectively. At the same flow rate, in the absence of glycine, the separation efficiency of microalgae for U- and W-shaped cross-sections was 91% and 96%, respectively. It was found that the spiral microchannel device with a W-shaped cross-section with a barrier in the center of the channel showed significantly higher separation efficiency. Spiral microchannel chips with U- or W-shaped cross-sections were easy to fabricate and exhibited high throughput. With these advantages, these devices could be widely applicable to other cell separation applications, such as separating circulating tumor cells from blood.

18.
J Biol Chem ; 287(24): 19973-84, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22528495

RESUMO

HemAT-Bs is a heme-based signal transducer protein responsible for aerotaxis. Time-resolved ultraviolet resonance Raman (UVRR) studies of wild-type and Y70F mutant of the full-length HemAT-Bs and the truncated sensor domain were performed to determine the site-specific protein dynamics following carbon monoxide (CO) photodissociation. The UVRR spectra indicated two phases of intensity changes for Trp, Tyr, and Phe bands of both full-length and sensor domain proteins. The W16 and W3 Raman bands of Trp, the F8a band of Phe, and the Y8a band of Tyr increased in intensity at hundreds of nanoseconds after CO photodissociation, and this was followed by recovery in ∼50 µs. These changes were assigned to Trp-132 (G-helix), Tyr-70 (B-helix), and Phe-69 (B-helix) and/or Phe-137 (G-helix), suggesting that the change in the heme structure drives the displacement of B- and G-helices. The UVRR difference spectra of the sensor domain displayed a positive peak for amide I in hundreds of nanoseconds after photolysis, which was followed by recovery in ∼50 µs. This difference band was absent in the spectra of the full-length protein, suggesting that the isolated sensor domain undergoes conformational changes of the protein backbone upon CO photolysis and that the changes are restrained by the signaling domain. The time-resolved difference spectrum at 200 µs exhibited a pattern similar to that of the static (reduced - CO) difference spectrum, although the peak intensities were much weaker. Thus, the rearrangements of the protein moiety toward the equilibrium ligand-free structure occur in a time range of hundreds of microseconds.


Assuntos
Bacillus subtilis/química , Proteínas de Bactérias/química , Hemeproteínas/química , Substituição de Aminoácidos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Ligantes de Grupo Heme , Hemeproteínas/genética , Hemeproteínas/metabolismo , Mutação de Sentido Incorreto , Estrutura Secundária de Proteína , Espectrofotometria Ultravioleta
19.
Analyst ; 138(14): 4035-9, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23733134

RESUMO

Spectral histopathology (SHP) is an emerging tool for label free annotation of tissue. While FTIR based SHP provides fast annotation of larger tissue sections, Raman based SHP is slower but achieves a 10 times higher spatial resolution as compared to FTIR. Usually NIR excitation is used for Raman measurements on biological samples. Here, for the first time 532 nm excitation is used to annotate colon tissue by Raman SHP. Excellent data quality is obtained, which resolves for example erythrocytes and lymphocytes. In addition to Raman scattering auto-fluorescence is observed. We found that this auto-fluorescence overlaps spatially with the fluorescence of antibodies against p53 used in routine immunohistochemistry in surgical pathology. This fluorescence indicates nuclei of cancer cells with mutated p53 and allows new label free assignment of cancer cells. These results open new avenues for optical diagnosis by Raman spectroscopy and autofluorescence.


Assuntos
Núcleo Celular/patologia , Proliferação de Células , Neoplasias do Colo/diagnóstico , Diagnóstico por Imagem , Eritrócitos/patologia , Linfócitos/patologia , Análise Espectral Raman/métodos , Núcleo Celular/genética , Neoplasias do Colo/genética , Neoplasias do Colo/cirurgia , Fluorescência , Humanos , Técnicas Imunoenzimáticas , Mutação/genética , Espectroscopia de Infravermelho com Transformada de Fourier , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
20.
Commun Biol ; 4(1): 578, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990694

RESUMO

Channelrhodopsins are widely used in optogenetic applications. High photocurrents and low current inactivation levels are desirable. Two parallel photocycles evoked by different retinal conformations cause cation-conducting channelrhodopsin-2 (CrChR2) inactivation: one with efficient conductivity; one with low conductivity. Given the longer half-life of the low conducting photocycle intermediates, which accumulate under continuous illumination, resulting in a largely reduced photocurrent. Here, we demonstrate that for channelrhodopsin-1 of the cryptophyte Guillardia theta (GtACR1), the highly conducting C = N-anti-photocycle was the sole operating cycle using time-resolved step-scan FTIR spectroscopy. The correlation between our spectroscopic measurements and previously reported electrophysiological data provides insights into molecular gating mechanisms and their role in the characteristic high photocurrents. The mechanistic importance of the central constriction site amino acid Glu-68 is also shown. We propose that canceling out the poorly conducting photocycle avoids the inactivation observed in CrChR2, and anticipate that this discovery will advance the development of optimized optogenetic tools.


Assuntos
Ânions/química , Channelrhodopsins/fisiologia , Criptófitas/fisiologia , Fenômenos Eletrofisiológicos , Ativação do Canal Iônico , Luz , Optogenética , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA