Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microb Pathog ; 195: 106870, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39163920

RESUMO

Plants are a treasure trove of biological materials containing a wide range of potential phytochemicals that are target-specific, rapidly biodegradable, and environmentally friendly, with multiple medicinal effects. Unfortunately, the development of resistance to synthetic pesticides and antibiotics led to the discovery of new antibiotics, antioxidants, and biopesticides. This has also led to the creation of new medications that work very well. The current study aimed to prove that ornamental plants contain specialized active substances that are used in several biological processes. Mosquitoes, one of the deadliest animals on the planet, cause millions of fatalities each year by transmitting several human illnesses. Phytochemicals are possible biological agents for controlling pests that are harmful. The potential of leaf extracts of Bougainvillea glabra, Delonix regia, Lantana camara, and Platycladus orientalis against Culex pipiens and microbial agents was evaluated. Acetone extracts had more toxic effects against Cx. pipiens larvae (99.0-100 %, 72 h post-treatment), and the LC50 values were 142.8, 189.5, 95.4, and 71.1 ppm for B. glabra, D. regia, L. camara, and P. orientalis, respectively. Plant extracts tested in this study showed high insecticidal, antimicrobial, and antioxidant potential. GC-MS and HPLC analyses showed a higher number of terpenes, flavonoids, and phenolic compounds. The ADME analysis of element, caryophyllene oxide, caryophyllene, and copaene showed that they were similar to drugs and that they were better absorbed by the body and able to pass through the blood-brain barrier. Our results confirm the ability of ornamental plants to have promising larvicidal and antimicrobial activity and biotechnology.


Assuntos
Culex , Inseticidas , Lantana , Larva , Nyctaginaceae , Extratos Vegetais , Folhas de Planta , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Culex/efeitos dos fármacos , Lantana/química , Inseticidas/farmacologia , Nyctaginaceae/química , Folhas de Planta/química , Larva/efeitos dos fármacos , Metabolômica , Mosquitos Vetores/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Antioxidantes/farmacologia , Febre do Nilo Ocidental
2.
Sci Rep ; 14(1): 6248, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486053

RESUMO

Mosquitoes are one of the deadliest and most hazardous animals on Earth, where they transmit several diseases that kill millions of people annually. There is an ongoing search almost everywhere in the world for more effective and contemporary ways to control mosquitoes other than pesticides. Phytochemicals are affordable, biodegradable biological agents that specialize in eliminating pests that represent a risk to public health. The effectiveness of Acacia nilotica methanol and aqueous leaf extracts against 4th instar larvae was evaluated. The results revealed that the methanol extract of A. nilotica had a noticeable influence on the mortality rate of mosquito larvae, especially at high concentrations. Not only did the mortality rate rise significantly, but the hatching of the mosquito eggs was potentially suppressed.Terpenes, fatty acids, esters, glycosides, pyrrolidine alkane, piperazine, and phenols were the most prevalent components in the methanol extract, while the aqueous extract of A. nilotica exclusively showed the presence of fatty acids. The insecticidal susceptibility tests of both aqueous and alcoholic extract of A. nilotica confirmed that the Acacia plant could serves as a secure and efficient substitute for chemical pesticides because of its promising effect on killing larvae and egg hatching delaying addition to their safety as one of the natural pesticides. Molecular docking study was performed using one of the crucial and life-controlling protein targets, fatty acid binding protein (FABP) and the most active ingredients as testing ligands to describe their binding ability. Most of the structurally related compounds to the co-crystallized ligand, OLA, like hexadecanoic acid furnished high binding affinity to the target protein with very strong and stable intermolecular hydrogen bonding and this is quite similar to OLA itself. Some other structural non-related compounds revealed extraordinarily strong binding abilities like Methoxy phenyl piperazine. Most of the binding reactivities of the majortested structures are due to high structure similarity between the positive control, OLA, and tested compounds. Such structure similarity reinforced with the binding abilities of some detected compounds in the A. nilotica extract could present a reasonable interpretation for its insecticidal activity via deactivating the FABP protein. The FABP4 enzyme inhibition activity was assessed for of both methanolic and aqueous of acacia plant extract and the inhibition results of methanol extract depicted noticeable potency if compared to orlistat, with half-maximal inhibitory concentration (IC50) of 0.681, and 0.535 µg/ml, respectively.


Assuntos
Acacia , Culex , Inseticidas , Animais , Humanos , Acacia/química , Simulação de Acoplamento Molecular , Metanol , Inseticidas/farmacologia , Inseticidas/química , Ácidos Graxos , Piperazinas
3.
Biosci. j. (Online) ; 39: e39100, 2023.
Artigo em Inglês | LILACS | ID: biblio-1567601

RESUMO

The present study investigates the insecticidal and biochemical effects of two essential oils (EOs) and two photosensitizers against cotton aphids in a laboratory setting. The EOs evaluated were clove (Syzygium aromaticum L.) and basil (Ocimum basilicum), while the photosensitizers were rose bengal and rhodamine B. The individual median lethal concentrations (LC50) revealed that clove was ~4.44 times more potent than basil, and rhodamine B was ~1.34 times more potent than rose bengal. The mortality rates increased using higher concentrations of the photosensitizers and prolonging exposure time to sunlight. The most effective combination against adult aphids was found to be a mixture of sub-lethal concentrations of clove and rhodamine B, resulting in a mortality rate of 92.31%. Conversely, the combination of basil and rose bengal exhibited the lowest efficacy with a mortality rate of 33.33%. Biochemical analyses indicate that Rhodamine B, basil, and the basil-rhodamine B mixture (mixture C) significantly reduced trehalase activity. However, the protease activity significantly increased in aphids treated with rose bengal, clove, and the clove-rose bengal mixtures (mixtures A and B). The lipase activity is notably decreased upon treatment with rhodamine B and clove. Glutathione S-transferase (GST) activity decreased in aphids treated with rose bengal and the basil-rhodamine B mixtures (mixtures C and D), suggesting that GST did not play a role in detoxifying these compounds, thereby explaining the susceptibility of A. gossypii. Overall, the combination of essential oils and photosensitizers has demonstrated a synergistic effect in controlling Aphis gossypii, offering great potential as an effective strategy for aphid management.


Assuntos
Rosa Bengala , Ocimum basilicum , Syzygium
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA