Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Fluoresc ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814526

RESUMO

Recently, dual-mode techniques have garnered considerable attention and have been shown to be effective approaches for biomedical analysis and environmental monitoring. A novel and simple dual-mode spectrophotometric and fluorometric probe based on lignin-derived carbon dots (LCDs) was developed to detect atorvastatin calcium (ATS) in a bulk powder and its commercial product. The synthesized LCDs exhibit exceptional fluorescence characteristics and are highly soluble in water while maintaining reasonable stability. The average particle size of the LCDs was 3.42 ± 1.03 nm. The characterization of the produced LCDs indicated a structure resembling graphene oxide with the presence of several functional groups. The developed LCDs show a good fluorescence quantum yield of 32.2%. The fluorescence of the LCDs is quenched by ATS at an emission wavelength of 315 nm after excitation at 275 nm through dynamic and static quenching mechanisms. The optimal reaction conditions for the dual-mode reaction were a pH of 9 and 0.05 mL of the LCDs, which were measured after 3 min at 30 °C by spectrophotometry, followed by 7 min at 20 °C by fluorometric methods. According to the spectrophotometric results, the response of ATS was linear in the range of 4.0-100.0 µg/mL, while according to the fluorometric results, the dynamic range was 3.0-50.0 µg/mL. The limits of detection (LODs) and the limits of quantification (LOQs) were 0.97 µg/mL and 2.95 µg/mL for the fluorometric method, respectively. The nanoprobe effectively analyzed ATS in medication samples and yielded good results.

2.
J Fluoresc ; 34(1): 465-478, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37610703

RESUMO

Cancer is a broad category of disease that can affect virtually any organ or tissue in the body when abnormal cells grow uncontrollably, invade surrounding tissue, and/or spread to other organs. Dabrafenib is indicated for the treatment of adult patients with advanced non-small cell lung cancer. In the present study, two newly developed spectrofluorimetric probes for the detection of the anticancer drug Dabrafenib (DRF) in its authentic and pharmaceutical products using an ecologically synthesized copper oxide nanoparticle (CuONPs) from Salvia officinalis leaf extract and a copper chelate complex are presented. The first system is based on the influence of the particular optical properties of CuONPs on the enhancement of fluorescence detection. The second system, on the other hand, acts through the formation of a copper charge transfer complex. Various spectroscopic and microscopic studies were performed to confirm the environmentally synthesized CuONPs. The fluorescence detections in the two systems were measured at λex 350 and λem of 432 nm. The results showed the linear concentration ranges for the DRF-CuONPs-SDS and DRF-Cu-SDS complexes were determined to be 1.0-500 ng mL- 1 and 1.0-200 ng mL- 1, respectively. FI = 1.8088x + 21.418 (r = 0.9997) and FI = 2.7536x + 163.37 (r = 0.9989) were the regression equations. The lower detection and quantification limits for the aforementioned fluorescent systems were determined to be 0.4 and 0.8 ng mL- 1 and 1.0 ng mL- 1, respectively. The results also showed that intra-day DRF assays using DRF-CuONPs-SDS and DRF-Cu(NO3)2-SDS systems yielded 0.17% and 0.54%, respectively. However, the inter-day assay results for the above systems were 0.27% and 0.65%, respectively. The aforementioned two systems were effectively used in the study of DRF with excellent percent recoveries of 99.66 ± 0.42% and 99.42 ± 0.56%, respectively. Excipients such as magnesium stearate, titanium dioxide, red iron oxide, and silicon dioxide used in pharmaceutical formulations, as well as various common cations, amino acids, and sugars, had no effect on the detection of compound.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Imidazóis , Neoplasias Pulmonares , Nanopartículas Metálicas , Nanopartículas , Oximas , Salvia officinalis , Humanos , Cobre/química , Espectrometria de Fluorescência , Nanopartículas/química , Dióxido de Silício , Nanopartículas Metálicas/química
3.
Molecules ; 28(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36903341

RESUMO

BACKGROUND: The remarkable properties of nickel oxide (NiO) and cerium oxide (CeO2) nanostructures have attracted considerable interest in these nanocomposites as potential electroactive materials for sensor construction. METHODS: The mebeverine hydrochloride (MBHCl) content of commercial formulations was determined in this study using a unique factionalized CeO2/NiO-nanocomposite-coated membrane sensor. RESULTS: Mebeverine-phosphotungstate (MB-PT) was prepared by adding phosphotungstic acid to mebeverine hydrochloride and mixing with a polymeric matrix (polyvinyl chloride, PVC) and plasticizing agent o-nitrophenyl octyl ether. The new suggested sensor showed an excellent linear detection range of the selected analyte at 1.0 × 10-8-1.0 × 10-2 mol L-1 with regression equation EmV = (-29.429 ± 0.2) log [MB] + 347.86. However, the unfunctionalized sensor MB-PT displayed less linearity at 1.0 × 10-5-1.0 × 10-2 mol L-1 drug solution with regression equation EmV = (-26.603 ± 0.5) log [MB] + 256.81. By considering a number of factors, the applicability and validity of the suggested potentiometric system were improved following the rules of analytical methodological requirements. CONCLUSION: The created potentiometric technique worked well for determining MB in bulk substance and in medical commercial samples.


Assuntos
Nanocompostos , Fenetilaminas , Potenciometria/métodos
4.
Molecules ; 28(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903454

RESUMO

The existing study pronounces two newly developed spectrofluorimetric probes for the assay of ambroxol hydrochloride in its authentic and commercial formulations using an aluminum chelating complex and a biogenically mediated and synthesized aluminum oxide nanoparticles (Al2O3NPs) from Lavandula spica flower extract. The first probe is based on the formation of an aluminum charge transfer complex. However, the second probe is based on the effect of the unique optical characteristics of Al2O3NPs in the enhancement of fluorescence detection. The biogenically synthesized Al2O3NPs were confirmed using various spectroscopic and microscopic investigations. The fluorescence detections in the two probes were measured at a λex of 260 and 244 and a λem of 460 and 369 nm for the two suggested probes, respectively. The findings showed that the fluorescence intensity (FI) covered linear concentration ranges of 0.1-200 ng mL-1 and 1.0-100 ng mL-1 with a regression of ˃0.999 for AMH-Al2O3NPs-SDS and AMH-Al(NO3)3-SDS, respectively. The lower detection and quantification limits were evaluated and found to be 0.04 and 0.1 ng mL-1 and 0.7 and 0.1 ng/mL-1 for the abovementioned fluorescence probes, respectively. The two suggested probes were successfully applied for the assay of ambroxol hydrochloride (AMH) with excellent percentage recoveries of 99.65% and 99.85%, respectively. Excipients such as glycerol and benzoic acid used as additives in pharmaceutical preparations, several common cations, and amino acids, as well as sugars, were all found to have no interference with the approach.


Assuntos
Ambroxol , Lavandula , Nanopartículas , Óxido de Alumínio , Alumínio , Espectrometria de Fluorescência/métodos , Quelantes
5.
Molecules ; 28(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38005274

RESUMO

Gemcitabine is a chemotherapeutic agent used to treat various malignancies, including breast and bladder cancer. In the current study, three innovative selective gemcitabine hydrochloride sensors are developed using 4-tert-butylcalix-[8]-arene (sensor 1), ß-cyclodextrin (sensor 2), and γ-cyclodextrin (sensor 3) as ionophores. The three sensors were prepared by incorporating the ionophores with o-nitrophenyl octyl ether as plasticizer and potassium tetrakis(4-chlorophenyl) borate as ionic additive into a polyvinyl chloride polymer matrix. These sensors are considered environmentally friendly systems in the analytical research. The linear responses of gemcitabine hydrochloride were in the concentration range of 6.0 × 10-6 to 1.0 × 10-2 mol L-1 and 9.0 × 10-6 to 1.0 × 10-2 mol L-1 and 8.0 × 10-6 to 1.0 × 10-2 mol L-1 for sensors 1, 2, and 3, respectively. Over the pH range of 6-9, fast-Nernst slopes of 52 ± 0.6, 56 ± 0.3, and 55 ± 0.8 mV/decade were found in the same order with correlation regressions of 0.998, 0.999, and 0.998, respectively. The lower limits of detection for the prepared sensors were 2.5 × 10-6, 2.2 × 10-6, and 2.7 × 10-6 mol L-1. The sensors showed high selectivity and sensitivity for gemcitabine. Validation of the sensors was carried out in accordance with the requirements established by the IUPAC, while being inexpensive and easy to use in drug formulation. A statistical analysis of the methods in comparison with the official method showed that there was no significant difference in accuracy or precision between them. It was shown that the new sensors could selectively and accurately find gemcitabine hydrochloride in bulk powder, pharmaceutical formulations, and quality control tests. The ionophore-based sensor shows several advantages over conventional PVC membrane sensor sensors regrading the lower limit of detection, and higher selectivity towards the target ion.


Assuntos
Antineoplásicos , Gencitabina , Composição de Medicamentos , Ionóforos , Polímeros , Potenciometria/métodos , Cloreto de Polivinila
6.
Molecules ; 27(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35056891

RESUMO

This work describes an environmental-friendly preparation of ZnO nanoparticles using aqueous oat extract. The advanced electrochemical and optical features of green synthesized ZnONPs displayed excellent antibacterial activity and exhibited an important role in pharmaceutical determinations. The formation of nanoscale ZnO was confirmed using various spectroscopic and microscopic investigations. The formed nanoparticles were found to be around 100 nm. The as-prepared ZnONPs were monitored for their antibacterial potential against different bacterial strains. The inhibition zones for ZnONPs were found as Escherichia coli (16 mm), Pseudomonas aeruginosa (17 mm), Staphylococcus aureus (12 mm) and Bacillus subtilis (11 mm) using a 30-µg mL-1 sample concentration. In addition, ZnONPs exhibited significant antioxidant effects, from 58 to 67%, with an average IC50 value of 0.88 ± 0.03 scavenging activity and from 53 to 71% (IC50 value of 0.73 ± 0.05) versus the scavenging free radicals DPPH and ABTS, respectively. The photocatalytic potential of ZnONPs for Rhodamine B dye degradation under UV irradiation was calculated. The photodegradation process was carried out as a function of time-dependent and complete degradation (nearly 98%), with color removal after 120 min. Conclusively, the synthesized ZnONPs using oat biomass might provide a great promise in the future for biomedical applications.


Assuntos
Staphylococcus aureus
7.
Nanotechnology ; 32(31)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33794506

RESUMO

To overcome multi-drug resistance in microbes, highly efficient antimicrobial substances are required that have a controllable antibacterial effect and are biocompatible. In the present study, an efficient phototherapeutic antibacterial agent, human serum albumin (HSA)/reduced graphene oxide (rGO)/Cladophora glomeratabionanocomposite was synthesized by the incorporation of rGO nanoparticles with HSA, forming protein-rGO, and decorated with a natural freshwater seaweedCladophora glomerata. The prepared HSA/rGO/Cladophora glomeratabionanocomposite was characterized by spectroscopic (UV-vis, FTIR, XRD and Raman) and microscopic (TEM and SEM) techniques. The as-synthesized bionanocomposite showed that sunlight/NIR irradiation stimulated ROS-generating dual-phototherapic effects against antibiotic-resistant bacteria. The bionanocomposite exerted strong antibacterial effects (above 96 %) against amoxicillin-resistantP. aeruginosaandS. aureus, in contrast to single-model-phototherapy. The bionanocomposite not only generated abundant ROS for killing bacteria, but also expressed a fluorescence image for bacterial tracking under sunlight/NIR irradiation. Additionally, the bionanocomposite displayed pronounced antioxidant activity.


Assuntos
Clorófitas/fisiologia , Grafite/química , Estresse Oxidativo/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Albumina Sérica Humana/química , Staphylococcus aureus/crescimento & desenvolvimento , Carga Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Células HeLa , Humanos , Viabilidade Microbiana/efeitos dos fármacos , Nanocompostos , Tamanho da Partícula , Fotoquimioterapia , Terapia Fototérmica , Pseudomonas aeruginosa/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/efeitos dos fármacos
8.
Luminescence ; 34(2): 222-233, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30740868

RESUMO

This article suggests a new sequential injection analysis chemiluminescence (SIA-CL) strategy for monitoring the caffeine (CAF) content in soft and energy drinks using the catalytic activities of different nano-metal oxides. The present study describes three different SIA-CL systems (luminol-ferricyanide (III) coupled with Fe2 O3 or ZnO nanoparticles (NPs), and luminol-H2 O2 coupled with CuONPs. All experimental conditions were optimized and the linear concentration ranges of pure CAF were evaluated using the calibration graphs. The selectivity of the developed SIA-CL systems was studied under the influence of various interfering species that may be present in soft or energy drinks such as sodium ions, sucrose, glucose, sodium benzoate, sodium citrate, riboflavin, niacin, citric, phosphoric and ascorbic acids. International Council for Harmonization (ICH) guidelines were obeyed for the validation of the suggested CL methods. The developed SIA-CL systems displayed linear relationships over the concentration ranges 1.0-350, 5.0-400 and 10.0-400 µg ml-1 with Fe2 O3 NPs, ZnO NPs and CuO NPs, respectively. The recorded lower limits of detection and quantification were 0.7, 2.7 and 7.8 µg ml-1 , and 1.0, 5.0 and 10.0 µg ml-1 for the previously mentioned SIA-CL systems. The results revealed high selectivity for CAF determination and were in good agreement with those obtained by other reported methods.


Assuntos
Cafeína/análise , Bebidas Energéticas/análise , Compostos Férricos/química , Luminescência , Nanopartículas/química , Óxido de Zinco/química , Catálise , Tamanho da Partícula , Propriedades de Superfície
9.
Int J Mol Sci ; 19(4)2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29641488

RESUMO

The clinical detection of carbohydrate antigen 19-9 (CA 19-9), a tumor marker in biological samples, improves and facilitates the rapid screening and diagnosis of pancreatic cancer. A simple, low cost, fast, and green synthesis method to prepare a viable carbon quantum dots/gold (CQDs/Au) nanocomposite fluorescence immunosensing solution for the detection of CA 19-9 was reported. The present method is conducted by preparing glucose-derived CQDs using a microwave-assisted method. CQDs were employed as reducing and stabilizing agents for the preparation of a CQDs/Au nanocomposite. The immobilized anti-CA 19-9-labeled horseradish peroxidase enzyme (Ab-HRP) was anchored to the surface of a CQDs/Au nanocomposite by a peptide interaction between the carboxylic and amine active groups. The CA 19-9 antigen was trapped by another monoclonal antibody that was coated on the surface of microtiter wells. The formed sandwich capping antibody-antigen-antibody enzyme complex had tunable fluorescence properties that were detected under excitation and emission wavelengths of 420 and 530 nm. The increase in fluorescence intensities of the immunoassay sensing solution was proportional to the CA 19-9 antigen concentration in the linear range of 0.01-350 U mL-1 and had a lower detection limit of 0.007 U mL-1. The proposed CQDs/Au nanocomposite immunoassay method provides a promising tool for detecting CA 19-9 in human serum.


Assuntos
Biomarcadores Tumorais/sangue , Antígeno CA-19-9/sangue , Ouro/química , Técnicas de Diagnóstico Molecular/métodos , Nanocompostos/química , Pontos Quânticos/química , Carbono/química , Imunofluorescência/métodos , Humanos , Nanocompostos/efeitos adversos
10.
Luminescence ; 31(6): 1194-200, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26781988

RESUMO

This study described the utility of green analytical chemistry in the synthesis of gelatin-capped silver, gold and bimetallic gold-silver nanoparticles (NPs). The preparation of nanoparticles was based on the reaction of silver nitrate or chlorauric acid with a 1.0 wt% aqueous gelatin solution at 50°C. The gelatin-capped silver, gold and bimetallic NPs were characterized using transmission electron microscopy, UV-vis, X-ray diffraction and Fourier transform infrared spectroscopy, and were used to enhance a sensitive sequential injection chemiluminescence luminol-potassium ferricyanide system for determination of the anticancer drug raloxifene hydrochloride. The developed method is eco-friendly and sensitive for chemiluminescence detection of the selected drug in its bulk powder, pharmaceutical injections and biosamples. After optimizing the conditions, a linear relationship in the range of 1.0 × 10(-9) to 1.0 × 10(-1)  mol/L was obtained with a limit of detection of 5.0 × 10(-10)  mol/L and a limit of quantification of 1.0 × 10(-9)  mol/L. Statistical treatment and method validation were performed based on ICH guidelines. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Antineoplásicos/análise , Gelatina/química , Ouro/química , Luminescência , Nanopartículas Metálicas/química , Cloridrato de Raloxifeno/análise , Prata/química , Tamanho da Partícula , Propriedades de Superfície
11.
Int J Mol Sci ; 17(12)2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27918458

RESUMO

The present article introduces a new approach to fabricate carbon paste sensors, including carbon paste, modified carbon paste inclusion ß-cyclodextrin, and carbon nanotubes for the quantification of dorzolamide hydrochloride (DRZ). This study is mainly based on the construction of three different carbon paste sensors by the incorporation of DRZ with phosphotungstic acid (PTA) to form dorzolamide-phosphotungstate (DRZ-PT) as an electroactive material in the presence of the solvent mediator ortho-nitrophenyloctyl ether (o-NPOE). The fabricated conventional carbon paste sensor (sensor I), as well as the other modified carbon paste sensors using ß-cyclodextrin (sensor II) and carbon nanotubes (sensor III), have been investigated. The sensors displayed Nernstian responses of 55.4 ± 0.6, 56.4 ± 0.4 and 58.1 ± 0.2 mV·decade-1 over concentration ranges of 1.0 × 10-5-1.0 × 10-2, 1.0 × 10-6-1.0 × 10-2, and 5.0 × 10-8-1.0 × 10-2 mol·L-1 with lower detection limits of 5.0 × 10-6, 5.0 × 10-7, and 2.5 × 10-9 mol·L-1 for sensors I, II, and III, respectively. The critical performance of the developed sensors was checked with respect to the effect of various parameters, including pH, selectivity, response time, linear concentration relationship, lifespan, etc. Method validation was applied according to the international conference on harmonisation of technical requirements for registration of pharmaceuticals for human use ICH guidelines. The developed sensors were employed for the determination of DRZ in its bulk and dosage forms, as well as bio-samples. The observed data were statistically analyzed and compared with those obtained from other published methods.


Assuntos
Técnicas Biossensoriais/métodos , Carbono/química , Eletroquímica/métodos , Nanotubos de Carbono/química , Sulfonamidas/análise , Tiofenos/análise , beta-Ciclodextrinas/química , Calibragem , Concentração de Íons de Hidrogênio , Limite de Detecção , Soluções Oftálmicas/análise , Plastificantes/química , Reprodutibilidade dos Testes , Sulfonamidas/química , Temperatura , Tiofenos/química , Fatores de Tempo
12.
Luminescence ; 30(8): 1403-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25873565

RESUMO

Two novel sensitive sequential injection chemiluminescence analysis and fluorescence methods for trovafloxacin mesylate detection have been developed. The methods were based on the enhancement effect of gold nanoparticles on luminol-ferricyanide-trovafloxacin and europium(III)-trovafloxacin complex systems. The optimum conditions for both detection methods were investigated. The chemiluminescence signal was emitted due to the enhanced effect of gold nanoparticles on the reaction of luminol-ferricyanide-trovafloxacin in an alkaline medium. The response was linear over a concentration range of 1.0 × 10(-9) to 1.0 × 10(-2) mol/L (%RSD = 1.3), (n = 9, r = 0.9991) with a detection limit of 1.7 × 10(-10) mol/L (S/N = 3). The weak fluorescence intensity signal of the oxidation complex of europium(III)-trovafloxacin was strongly enhanced by gold nanoparticles and detected at λex = 330 and λem = 540 nm. Fluorescence detection enabled the determination of trovafloxacin mesylate over a linear range of 1.0 × 10(-8) to 1.0 × 10(-3) mol/L (%RSD = 1.2), (n = 6, r = 0.9993) with a detection limit of 3.3 × 10(-9) mol/L. The proposed methods were successfully applied to the determination of the studied drug in its bulk form and in pharmaceutical preparations. The results were treated statistically and compared with those obtained from other reported methods.


Assuntos
Fluoroquinolonas/análise , Ouro/química , Nanopartículas Metálicas/química , Naftiridinas/análise , Fluorescência , Limite de Detecção , Luminescência , Medições Luminescentes , Luminol/química
13.
Luminescence ; 30(1): 3-11, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24802358

RESUMO

Micelles are self-assembled aggregates that arrange themselves into spheres in aqueous media. When the surfactant concentration reaches the critical micelle concentration, extensive aggregation of the surfactant monomers occurs to form micelles. A micelle has both a hydrophilic and a hydrophobic part. This allows them to form a spherical shape and for their glycolipid and phospholipid components to form lipid bilayers. The importance of micelles is increasing because of their wide analytical applications. Recently, colloidal carrier systems have received much attention in the field of analytical chemistry, especially in luminescence enhancement applications.


Assuntos
Biomarcadores Tumorais/análise , Luminescência , Neoplasias/diagnóstico , Preparações Farmacêuticas/análise , Tensoativos/análise , Animais , Sistemas de Liberação de Medicamentos , Humanos , Micelas
14.
Luminescence ; 30(1): 91-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24850667

RESUMO

A new simple, accurate and sensitive sequential injection analysis chemiluminescence (CL) detection method for the determination of cefditoren pivoxil (CTP) has been developed. The developed method was based on the enhancement effect of silver nanoparticles on the CL signal arising from a luminol-potassium ferricyanide reaction in the presence of CTP. The optimum conditions relevant to the effect of luminol, potassium ferricyanide and silver nanoparticle concentrations were investigated. The proposed method showed linear relationships between relative CL intensity and the investigated drug concentration at the range 0.001-5000 ng/mL, (r = 0.9998, n = 12) with a detection limit of 0.5 pg/mL and quantification limit of 0.001 ng/mL. The relative standard deviation was 1.6%. The proposed method was employed for the determination of CTP in bulk drug, in its pharmaceutical dosage forms and biological fluids such as human serum and urine. The interference of some common additive compounds such as glucose, lactose, starch, talc and magnesium stearate was investigated. In addition, the interference of some related cephalosporins was tested. No interference was recorded. The obtained sequential injection analysis-CL results were statistically compared with those from a reported method and did not show any significant differences.


Assuntos
Cefalosporinas/análise , Ferricianetos/química , Luminescência , Luminol/química , Nanopartículas Metálicas/química , Prata/química , Análise de Injeção de Fluxo/métodos , Humanos , Conformação Molecular , Comprimidos/química
15.
PLoS One ; 19(7): e0307335, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38995925

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0282742.].

16.
Environ Sci Pollut Res Int ; 31(11): 17064-17096, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38334931

RESUMO

Due to massive industrial development, organic and inorganic wastes are very common in most industrial effluents from the pharmaceutical industry. Even in low concentrations, they are very dangerous and harmful to humans and other living organisms. Antibiotics are frequently detected in surface waters, in soil, in wastewater from sewage treatment plants, and even in drinking water. The major environmental threat they pose has prompted to search for effective and environmentally friendly means of eliminating these toxins. The biogenic synthesis of nanomaterials using natural herbal extracts has attracted considerable attention due to their low-cost, environmentally friendly and non-toxic nature, and as a reversal of various physical and chemical processes. The ceria nanoparticles (CeO2 NPs), nickel oxide nanoparticles (NiO NPs), and CeO2/NiO nanocomposites (CeO2/NiO NCS) were successfully prepared by simple biosynthetic routes using Polysiphonia urceolata algae extract as green surfactants and tested for toxic ofloxacin removal efficiency. The formed nanostructures were identified and characterized by various microscopic (FESEM-EDX, TEM, XRD, BET, and XPS) and spectroscopic (UV-Vis, FTIR, and TGA) methods. The adsorption/desorption of ofloxacin (OFX) on the surface of the nanomaterials was investigated under optimized conditions (initial dose 20 mg/L, agitation speed 250 rpm, pH 12, adsorbent dose 0.5 mg/L, and contact time 120 min). The removal efficiencies were 78%, 86%, and 94% for CeO2 NPs, NiO NPs and CeO2/NiO NCS, respectively, where OFX removal was found to be spontaneous, followed by Freundlich isotherm and pseudo-second order kinetic reaction model. The OFX adsorption mechanism on the nanomaterials involved the surface complexation via specific electrostatic attraction and H-bonding. The biogenic nanomaterials were also tested for their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus. The CeO2/NiO NCS exhibited the highest antibacterial activity with zone of inhibition (31.12 ± 0.59 mm) against S. epidermidis, followed by CeO2NPs and NiONPs with zones of inhibition (25.53 ± 1.2 mm) and (21.42 ± 0.6 mm) against P. aeruginosa and S. epidermidis, respectively. This study demonstrated the efficiency of the synthesized nanomaterials in removing toxins such as OFX from contaminated water and can serve as potential antibacterial and antioxidant agents. Notably, the heterogeneous nanomaterials demonstrated remarkable stability across a broad pH range, promising reusability and indicated tremendous potential of waste biomass reduction and OFX effluent treatment.


Assuntos
Cério , Água Potável , Algas Comestíveis , Nanocompostos , Níquel , Rodófitas , Humanos , Antibacterianos/química , Nanocompostos/química , Ofloxacino
17.
Int J Anal Chem ; 2024: 8354311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715950

RESUMO

The advanced and highly functional properties of Al2O3 and NiO nanoparticles promote the widespread use of metal oxides as remarkable electroactive materials for sensing and electrochemical applications. The proposed study describes a comparison of the sensitivity and selectivity of two modified wire membrane sensors enriched with Al2O3 and NiO nanoparticles with conventional wire membranes for the quantification of the antidiabetic drug metformin hydrochloride (MTF). The results show linear relationships of the enriched Al2O3 and NiO nanosensors over the concentration ranges 1.0 × 10-10-1.0 × 10-2 mol L-1 and 1.0 × 10-6-1.0 × 10-2 M for both the modified sensors and the conventional coated wire membrane sensors. The regression equations were EmV = (52.1 ± 0.5) log (MTF) + 729 for enriched nanometallic oxides, EmV = (57.04 ± 0.4) log (MTF) + 890.66, and EmV = (58.27 ± 0.7) log (MTF) + 843.27 with correlation coefficients of 0.9991, 0.9997, and 0.9998 for the aforementioned sensors, respectively. The proposed method was fully validated with respect to the recommendations of the International Union of Pure and Applied Chemistry (IUPAC). The newly functionalized sensors have been successfully used for the determination of MTF in its commercial products.

18.
Heliyon ; 10(4): e26164, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38390119

RESUMO

The current research proposed a highly sensitive and selective spectrofluorometric approach for the assay of gastrointestinal medications omeprazole (OMZ) and domperidone (DOM). Green synthesis of metal oxide nanoparticles such as zinc oxide (ZnONPs) and cerium oxide (CeO2NPs) using Pimpinella anisum and Syzygium aromaticum extract was used as fluorescence emission catalysts for the determination of OMZ and DOM. Due to their unique optical properties, nanoparticles (NPs) form the basis for spectrofluorimetric quantification of the selected drugs. The detection studies were performed under λex/λem 350/450 nm and 284/392 nm for OMZ and DOM in the presence of ZnONPs and CeO2NPs, respectively. Under ideal conditions, fluorescence intensities (FI) were linearly with correlation coefficient (r = 0.999) over concentration ranges of 0.1-100 and 0.01-200 µg mL-1 for OMZ, 0.01-100 and 0.01-300 n g mL-1 for DOM in the presence of ZnONPs and CeO2NPs, respectively. Method validation was carried out to guarantee the accuracy, suitability, and precision of the proposed fluorescence (FL) systems for the determination of OMZ and DOM. Analytical method guidelines and requirements were followed. The designed procedure was used effectively to identify the determined drugs in both their pure and commercial versions.

19.
RSC Adv ; 14(28): 19969-19982, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38911833

RESUMO

Recently, carbon dots (CDs) have been extensively investigated as potential tools for numerous applications. Modified lignin-based CDs have been synthesized and used in the field of drug detection. They were found to be highly selective and sensitive to valsartan (VAL). Using a simple hydrothermal method, phosphorus and chlorine co-doped CDs were synthesized using lignin extracted from date seeds. The fluorescence properties of the synthesized CDs are influenced by several factors, which were investigated in detail. The optimal synthesis conditions were 1.50 g of lignin, 18 mL of 2 M NaOH, 1 mM H3PO4, 3 mM HCl and the mixture was heated at 220 °C for 16 hours. The synthesized lignin-based CDs have excellent FL properties and are well soluble in water with reasonable stability. Characterization of the prepared CDs revealed that they have various functional groups with a graphene oxide-like structure. The developed CDs show a good quantum yield of 37.7%. The FL of the CDs is quenched by VAL at λ em 313 nm after λ ex at 275 nm by a combination of static and dynamic quenching mechanisms. The response of VAL was linear in the range of 4.0-100.0 µg mL-1. The detection and quantification limits of VAL were 1.23 and 3.71 µg mL-1, respectively. The nanoprobe was successfully used to analyze VAL in drug samples and provided satisfactory results.

20.
Heliyon ; 10(11): e31425, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38828354

RESUMO

The current work suggests a new, ultrasensitive green functionalized sensor for the determination of anti-inflammatory medication diclofenac sodium (DCF). Alumina (Al2O3) and cerium oxide (CeO2) nanoparticles (NPs) have attracted great interest for their use as outstanding and electroactive nanocomposite in potentiometric and sensory research due to their ultrafunctional potential. The formed nanoparticles have been confirmed using various spectroscopic and microscopic techniques. The fennel extract-mediated Al2O3/CeO2 nanocomposite (Al2O3/CeO2 NCS) modified coated wire membrane sensor developed in this study was used to quantify DCF in bulk and commercial products. Diclofenac sodium was coupled with phosphomolybdic acid (PMA) to generate diclofenac phosphomolybdate (DCF-PM) as an active ion-pair in the existence of polyvinyl chloride (PVC) and o-nitrophenyl octyl ether (o-NPOE). Clear peaks at 270, and 303 nm with band gaps of 4.59 eV and 4.09 eV were measured using UV-vis spectroscopy of Al2O3 and CeO2, respectively. The crystallite sizes of the formed nanoparticles were XRD-determined to be 30.13 ± 8, 17.72 ± 3, and 35.8 ± 0.5 nm for Al2O3, CeO2, and Al2O3/CeO2 NCS, respectively. The developed sensor showed excellent response for the measurement and assay of DCF, with a linearity between 1.0 × 10-9 and 1.0 × 10-2 mol L-1. EmV = (57.76) log [DCF] +622.69 was derived. On the other hand, the typical type DCF-PM presented a potentiometric response range of 1.0 × 10-5-1.0 × 10-2 mol L-1 and a regression equation of EmV = (56.97) log [DCF]+367.16. The functionalized sensor that was proposed was successful in determining DCF in its commercial tablets with percent recovery 99.95 ± 0.3. Method validation has been used to improve the suitability of the suggested potentiometric technique, by studying various parameters with respect to the international council harmonization requirements for analytical methodologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA