Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell ; 186(23): 5028-5040.e14, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37852257

RESUMO

Wnt proteins are enzymatically lipidated by Porcupine (PORCN) in the ER and bind to Wntless (WLS) for intracellular transport and secretion. Mechanisms governing the transfer of these low-solubility Wnts from the ER to the extracellular space remain unclear. Through structural and functional analyses of Wnt7a, a crucial Wnt involved in central nervous system angiogenesis and blood-brain barrier maintenance, we have elucidated the principles of Wnt biogenesis and Wnt7-specific signaling. The Wnt7a-WLS complex binds to calreticulin (CALR), revealing that CALR functions as a chaperone to facilitate Wnt transfer from PORCN to WLS during Wnt biogenesis. Our structures, functional analyses, and molecular dynamics simulations demonstrate that a phospholipid in the core of Wnt-bound WLS regulates the association and dissociation between Wnt and WLS, suggesting a lipid-mediated Wnt secretion mechanism. Finally, the structure of Wnt7a bound to RECK, a cell-surface Wnt7 co-receptor, reveals how RECKCC4 engages the N-terminal domain of Wnt7a to activate Wnt7-specific signaling.


Assuntos
Receptores Acoplados a Proteínas G , Proteínas Wnt , Via de Sinalização Wnt , Barreira Hematoencefálica/metabolismo , Ligação Proteica , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Proteínas Wnt/química , Proteínas Wnt/metabolismo
2.
Cell ; 186(12): 2644-2655.e16, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37224812

RESUMO

Sphingosine-1-phosphate (S1P) is an important signaling sphingolipid that regulates the immune system, angiogenesis, auditory function, and epithelial and endothelial barrier integrity. Spinster homolog 2 (Spns2) is an S1P transporter that exports S1P to initiate lipid signaling cascades. Modulating Spns2 activity can be beneficial in treatments of cancer, inflammation, and immune diseases. However, the transport mechanism of Spns2 and its inhibition remain unclear. Here, we present six cryo-EM structures of human Spns2 in lipid nanodiscs, including two functionally relevant intermediate conformations that link the inward- and outward-facing states, to reveal the structural basis of the S1P transport cycle. Functional analyses suggest that Spns2 exports S1P via facilitated diffusion, a mechanism distinct from other MFS lipid transporters. Finally, we show that the Spns2 inhibitor 16d attenuates the transport activity by locking Spns2 in the inward-facing state. Our work sheds light on Spns2-mediated S1P transport and aids the development of advanced Spns2 inhibitors.


Assuntos
Inflamação , Lisofosfolipídeos , Humanos , Esfingosina , Proteínas de Transporte de Ânions/fisiologia
3.
Nature ; 607(7920): 816-822, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35831507

RESUMO

Wnt signalling is essential for regulation of embryonic development and adult tissue homeostasis1-3, and aberrant Wnt signalling is frequently associated with cancers4. Wnt signalling requires palmitoleoylation on a hairpin 2 motif by the endoplasmic reticulum-resident membrane-bound O-acyltransferase Porcupine5-7 (PORCN). This modification is indispensable for Wnt binding to its receptor Frizzled, which triggers signalling8,9. Here we report four cryo-electron microscopy structures of human PORCN: the complex with the palmitoleoyl-coenzyme A (palmitoleoyl-CoA) substrate; the complex with the PORCN inhibitor LGK974, an anti-cancer drug currently in clinical trials10; the complex with LGK974 and WNT3A hairpin 2 (WNT3Ap); and the complex with a synthetic palmitoleoylated WNT3Ap analogue. The structures reveal that hairpin 2 of WNT3A, which is well conserved in all Wnt ligands, inserts into PORCN from the lumenal side, and the palmitoleoyl-CoA accesses the enzyme from the cytosolic side. The catalytic histidine triggers the transfer of the unsaturated palmitoleoyl group to the target serine on the Wnt hairpin 2, facilitated by the proximity of the two substrates. The inhibitor-bound structure shows that LGK974 occupies the palmitoleoyl-CoA binding site to prevent the reaction. Thus, this work provides a mechanism for Wnt acylation and advances the development of PORCN inhibitors for cancer treatment.


Assuntos
Aciltransferases , Proteínas de Membrana , Via de Sinalização Wnt , Acilação/efeitos dos fármacos , Aciltransferases/antagonistas & inibidores , Aciltransferases/metabolismo , Antineoplásicos , Sítios de Ligação , Coenzima A/metabolismo , Microscopia Crioeletrônica , Histidina , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Palmitoil Coenzima A , Pirazinas/farmacologia , Piridinas/farmacologia , Serina , Especificidade por Substrato , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt3A
4.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34404721

RESUMO

The ABCG1 homodimer (G1) and ABCG5-ABCG8 heterodimer (G5G8), two members of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter G family, are required for maintenance of cellular cholesterol levels. G5G8 mediates secretion of neutral sterols into bile and the gut lumen, whereas G1 transports cholesterol from macrophages to high-density lipoproteins (HDLs). The mechanisms used by G5G8 and G1 to recognize and export sterols remain unclear. Here, we report cryoelectron microscopy (cryo-EM) structures of human G5G8 in sterol-bound and human G1 in cholesterol- and ATP-bound states. Both transporters have a sterol-binding site that is accessible from the cytosolic leaflet. A second site is present midway through the transmembrane domains of G5G8. The Walker A motif of G8 adopts a unique conformation that accounts for the marked asymmetry in ATPase activities between the two nucleotide-binding sites of G5G8. These structures, along with functional validation studies, provide a mechanistic framework for understanding cholesterol efflux via ABC transporters.


Assuntos
Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Colesterol/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Sítios de Ligação , Transporte Biológico , Microscopia Crioeletrônica , Humanos , Conformação Proteica
5.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331453

RESUMO

The Niemann-Pick C1 (NPC1) protein is the main protein involved in NPC disease, a fatal lysosomal lipid storage disease. NPC1, containing 1278 amino acids, is comprised of three lumenal domains (N-terminal, middle lumenal, C-terminal) and a transmembrane (TM) domain that contains a five helix bundle referred to as the sterol-sensing domain (SSD). The exact purpose of the SSD is not known, but it is believed that the SSD may bind cholesterol, either as a part of the lipid trafficking pathway or as part of a signaling mechanism. A recent cryo-EM structure has revealed an itraconazole binding site (IBS) in the SSD of human NPC1. Using this structural data, we constructed a model of cholesterol-bound wild-type (WT) and mutant P691S and performed molecular dynamics (MD) simulations of each cholesterol-bound protein. For WT NPC1, cholesterol migrates laterally, in the direction of the lipid bilayer. In the case of P691S, cholesterol is observed for the first time to migrate away from the SSD toward the N-terminal domain via a putative tunnel that connects the IBS with the lumenal domains. Structural features of the IBS are analyzed to identify the causes for different dynamical behavior between cholesterol-bound WT and cholesterol-bound P691S. The side chain of Ser691 in the P691S mutant introduces a hydrogen bond network that is not present in the WT protein. This change is likely responsible for the altered dynamical behavior observed in the P691S mutant and helps explain the disrupted cholesterol trafficking behavior observed in experiments.


Assuntos
Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Proteína C1 de Niemann-Pick/química , Conformação Proteica , Sítios de Ligação , Transporte Biológico , Colesterol/química , Colesterol/metabolismo , Proteína C1 de Niemann-Pick/genética , Ligação Proteica
6.
J Chem Inf Model ; 59(5): 2432-2441, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30942586

RESUMO

Two proteins have been linked as the critical components in the molecular mechanisms involved in the Niemann Pick type C (NPC) disease: NPC1, a 140 kDa polytopic membrane-bound protein, and the smaller (132 residues), water-soluble NPC2 protein. NPC1 is believed to act in tandem with NPC2, transferring cholesterol and other sterols out of the LE/Lys compartments. Mutations in either NPC1 or NPC2 can lead to an accumulation of cholesterol and lipids in the LE/Lys, the primary phenotype of the NPC disease, but approximately 95% of identified disease-causing mutations have been mapped to the membrane-bound NPC1 protein. Here, we investigate the full length, membrane-bound NPC1 protein computationally using a combination of molecular modeling, docking, and molecular dynamics (MD) simulations. An analysis of titratable amino acid side chains, several buried in protein pockets, reveals several nonstandard protonation states for the low-pH scenario (pH 5) that is realized in the lysosome. Together with the location of these buried amino acids, docking studies have identified putative lipid binding domains that are in close proximity to amino acids that, when mutated, are connected to NPC1 loss-of-function. Using energy analyses and MD simulations, we analyze these domains as potential cholesterol binding sites and propose the possibility of multiple sterol binding pockets enabling the intramolecular transport of sterol molecules to the transmembrane domain.


Assuntos
Lisossomos/metabolismo , Simulação de Dinâmica Molecular , Proteína C1 de Niemann-Pick/química , Proteína C1 de Niemann-Pick/metabolismo , Esteróis/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Ligação de Hidrogênio , Ligação Proteica , Conformação Proteica , Termodinâmica
7.
J Membr Biol ; 251(3): 315-327, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29516110

RESUMO

For the photocycle of the membrane protein bacteriorhodopsin to proceed efficiently, the thermal 13-cis to all-trans back-isomerization of the retinal chromophore must return the protein to its resting state on a time-scale of milliseconds. Here, we report on quantum mechanical/molecular mechanical energy calculations examining the structural and energetic determinants of the retinal cis-trans isomerization in the protein environment. The results suggest that a hydrogen-bonded network consisting of the retinal Schiff base, active site amino acid residues, and water molecules can stabilize the twisted retinal, thus reducing the intrinsic energy cost of the cis-trans thermal isomerization barrier.


Assuntos
Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Retinaldeído/química , Catálise , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Conformação Proteica , Isoformas de Proteínas
8.
Int J Mol Sci ; 19(9)2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30181526

RESUMO

The Niemann Pick type C (NPC) proteins, NPC1 and NPC2, are involved in the lysosomal storage disease, NPC disease. The formation of a NPC1⁻NPC2 protein⁻protein complex is believed to be necessary for the transfer of cholesterol and lipids out of the late endosomal (LE)/lysosomal (Lys) compartments. Mutations in either NPC1 or NPC2 can lead to an accumulation of cholesterol and lipids in the LE/Lys, the primary phenotype of the NPC disease. We investigated the NPC1(NTD)⁻NPC2 protein⁻protein complex computationally using two putative binding interfaces. A combination of molecular modeling and molecular dynamics simulations reveals atomic details that are responsible for interface stability. Cholesterol binding energies associated with each of the binding pockets for the two models are calculated. Analyses of the cholesterol binding in the two models support bidirectional ligand transfer when a particular interface is established. Based on the results, we propose that, depending on the location of the cholesterol ligand, a dynamical interface between the NPC2 and NPC1(NTD) proteins exists. Structural features of a particular interface can lower the energy barrier and stabilize the passage of the cholesterol substrate from NPC2 to NPC1(NTD).


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Colesterol/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Sítios de Ligação , Transporte Biológico , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Modelos Moleculares , Simulação de Dinâmica Molecular , Complexos Multiproteicos/química , Proteína C1 de Niemann-Pick , Ligação Proteica , Conformação Proteica , Transdução de Sinais , Proteínas de Transporte Vesicular
9.
Int J Mol Sci ; 19(12)2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30514002

RESUMO

A combination of molecular dynamics (MD) simulations and computational analyses uncovers structural features that may influence substrate passage and exposure to the active sites within the proteolytic chamber of the 20S proteasome core particle (CP). MD simulations of the CP reveal relaxation dynamics in which the CP slowly contracts over the 54 ns sampling period. MD simulations of the SyringolinA (SylA) inhibitor within the proteolytic B 1 ring chamber of the CP indicate that favorable van der Waals and electrostatic interactions account for the predominant association of the inhibitor with the walls of the proteolytic chamber. The time scale required for the inhibitor to travel from the center of the proteolytic chamber to the chamber wall is on the order of 4 ns, accompanied by an average energetic stabilization of approximately -20 kcal/mol.


Assuntos
Eucariotos/enzimologia , Peptídeos Cíclicos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Modelos Moleculares , Simulação de Dinâmica Molecular , Peptídeos Cíclicos/química , Inibidores de Proteassoma/química , Termodinâmica
10.
Molecules ; 23(9)2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30223458

RESUMO

The dilemma of reconciling the contradictory evidence regarding the conformation of long solvated peptide chains is the so-called "reconciliation problem". Clues regarding the stability of certain conformations likely lie in the electronic structure at the peptide⁻solvent interface, but the peptide⁻solvent interaction is not fully understood. Here, we study the influence of aqueous solvent on peptide conformations by using classical molecular dynamics (MD) and quantum mechanical/molecular mechanical (QM/MM) energy calculations. The model systems include an 11-residue peptide, X 2 A 7 O 2 (XAO), where X, A, and O denote diaminobutyric acid, alanine, and ornithine, respectively, and a 9-mer (Arg-Pro-Pro-Gly-Phe-Ser-Ala-Phe-Lys). Spectroscopic and MD data present conflicting evidence regarding the structure of XAO in water; some results indicate that XAO adopts a polyproline II (P II ) conformation, whereas other findings suggest that XAO explores a range of conformations. To investigate this contradiction, we present here the results of MD simulations of XAO and the 9-mer in aqueous solution, combined with QM/MM energy calculations.


Assuntos
Peptídeos/química , Solventes/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Teoria Quântica
11.
J Chem Inf Model ; 55(7): 1495-507, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26035493

RESUMO

ProPairs is a data set of crystal structures of protein complexes defined as biological assemblies in the protein data bank (PDB), which are classified as legitimate protein-protein docking complexes by also identifying the corresponding unbound protein structures in the PDB. The underlying program selecting suitable protein complexes, also called ProPairs, is an automated method to extract structures of legitimate protein docking complexes and their unbound partner proteins from the PDB which fulfill specific criteria. In this way a total of 5,642 protein complexes have been identified with 11,600 different decompositions in unbound protein pairs yielding legitimate protein docking partners. After removing sequence redundancy (requiring a sequence identity of the residues in the interface of less than 40%), 2,070 different legitimate protein docking complexes remain. For 810 of these protein docking complexes, both docking partners possess corresponding unbound structures in the PDB. From the 2,070 nonredundant protein docking complexes there are 417 which possess a cofactor at the interface. From the 176 protein docking complexes of the Protein-Protein Docking Benchmark 4.0 (DB4.0) data set, 13 differ from the ProPairs data set. Twelve of them differ with respect to the composition of the unbound structures but are contained in the large redundant ProPairs data set. One protein docking complex of the DB4.0 data set is not contained in ProPairs since the biological assembly specified in the PDB is wrong (PDB id 1d6r ). For one protein complex (PDB id 1bgx ) the DB4.0 data set uses a fabricated unbound structure. For public use interactive online access is provided to the ProPairs data set of nonredundant protein docking complexes along with the source code of the underlying method [ http://propairs.github.io].


Assuntos
Bases de Dados de Proteínas , Simulação de Acoplamento Molecular , Proteínas/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas/química
12.
Biochemistry ; 53(41): 6603-14, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25251378

RESUMO

Niemann-Pick Type C disease is characterized by disrupted lipid trafficking within the late endosomal (LE)/lysosomal (Lys) cellular compartments. Cholesterol transport within the LE/Lys is believed to take place via a concerted hand-off mechanism in which a small (131aa) soluble cholesterol binding protein, NPC2, transfers cholesterol to the N-terminal domain (NTD) of a larger (1278aa) membrane-bound protein, NPC1(NTD). The transfer is thought to occur through the formation of a stable intermediate complex NPC1(NTD)-NPC2, in which the sterol apertures of the two proteins align to allow passage of the cholesterol molecule. In the working model of the NPC1(NTD)-NPC2 complex, the sterol apertures are aligned, but the binding pockets are bent with respect to one another. In order for cholesterol to slide from one binding pocket to the other, a conformational change must occur in the proteins, in the ligand, or in both. Here, we investigate the possibility that the ligand undergoes a conformational change, or isomerization, to accommodate the bent transfer pathway. To understand what structural factors influence the isomerization rate, we calculate the energy barrier to cholesterol isomerization in both the NPC1(NTD) and NPC2 binding pockets. Here, we use a combined quantum mechanical/molecular mechanical (QM/MM) energy function to calculate the isomerization barrier within the native NPC1(NTD) and NPC2 binding pockets before protein-protein docking as well as in the binding pockets of the NPC1(NTD)-NPC2 complex after docking has occurred. The results indicate that cholesterol isomerization in the NPC2 binding pocket is energetically favorable, both before and after formation of the NPC1(NTD)-NPC2 complex. The NPC1(NTD) binding pocket is energetically unfavorable to conformational rearrangement of the hydrophobic ligand because it contains more water molecules near the ligand tail and amino acids with polar side chains. For three NPC1(NTD) mutants investigated, L175Q/L176Q, L175A/L176A, and E191A/Y192A, the isomerization barriers were all found to be higher than the barrier calculated in the NPC2 binding pocket. Our results indicate that cholesterol isomerization in the NPC2 binding pocket, either before or after docking, may ensure an efficient transfer of cholesterol to NPC1(NTD).


Assuntos
Proteínas de Transporte/química , Colesterol/química , Glicoproteínas/química , Glicoproteínas de Membrana/química , Modelos Moleculares , Doença de Niemann-Pick Tipo C/metabolismo , Substituição de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Colesterol/metabolismo , Biologia Computacional , Regulação para Baixo , Sistemas Inteligentes , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Peptídeos e Proteínas de Sinalização Intracelular , Ligantes , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Conformação Molecular , Simulação de Acoplamento Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/genética , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Teoria Quântica , Estereoisomerismo , Proteínas de Transporte Vesicular
13.
Nat Commun ; 15(1): 4386, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782953

RESUMO

Sialin, a member of the solute carrier 17 (SLC17) transporter family, is unique in its ability to transport not only sialic acid using a pH-driven mechanism, but also transport mono and diacidic neurotransmitters, such as glutamate and N-acetylaspartylglutamate (NAAG), into synaptic vesicles via a membrane potential-driven mechanism. While most transporters utilize one of these mechanisms, the structural basis of how Sialin transports substrates using both remains unclear. Here, we present the cryogenic electron-microscopy structures of human Sialin: apo cytosol-open, apo lumen-open, NAAG-bound, and inhibitor-bound. Our structures show that a positively charged cytosol-open vestibule accommodates either NAAG or the Sialin inhibitor Fmoc-Leu-OH, while its luminal cavity potentially binds sialic acid. Moreover, functional analyses along with molecular dynamics simulations identify key residues in binding sialic acid and NAAG. Thus, our findings uncover the essential conformational states in NAAG and sialic acid transport, demonstrating a working model of SLC17 transporters.


Assuntos
Microscopia Crioeletrônica , Simulação de Dinâmica Molecular , Humanos , Ácido N-Acetilneuramínico/metabolismo , Ácido N-Acetilneuramínico/química , Lisossomos/metabolismo , Células HEK293 , Conformação Proteica , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/química , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Dipeptídeos/química , Dipeptídeos/metabolismo , Dipeptídeos/farmacologia , Simportadores
14.
Front Mol Biosci ; 9: 945415, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299296

RESUMO

The function of the recently isolated sulerythrin (SulE) has been investigated using a combination of structural and electronic analyses based on quantum mechanical calculations. In the SulE structure of Fushinobu et al. (2003), isolated from a strictly aerobic archaeon, Sulfolobus tokadaii, a dioxygen-containing species was tentatively included at the active site during crystallographic refinement although the substrate specificity of SulE remains unclear. Studies have suggested that a structurally related enzyme, rubrerythrin, functions as a hydrogen peroxide reductase. Since SulE is a truncated version of rubrerythrin, the enzymes are hypothesized to function similarly. Hence, using available X-ray crystallography data (1.7 Å), we constructed various models of SulE containing a ZnII-Fe active site, differing in the nature of the substrate specificity (O2, H2O2), the oxidation level and the spin state of the iron ion, and the protonation states of the coordinating glutamate residues. Also, the substrate H2O2 is modeled in two possible configurations, differing in the orientation of the hydrogen atoms. Overall, the optimized geometries with an O2 substrate do not show good agreement with the experimentally resolved geometry. In contrast, excellent agreement between crystal structure arrangement and optimized geometries is achieved considering a H2O2 substrate and FeII in both spin states, when Glu92 is protonated. These results suggest that the dioxo species detected at the [ZnFe] active site of sulerythrin is H2O2, rather than an O2 molecule in agreement with experimental data indicating that only the diferrous oxidation state of the dimetal site in rubrerythrin reacts rapidly with H2O2. Based on our computations, we proposed a possible reaction pathway for substrate binding at the ZnFeII site of SulE with a H2O2 substrate. In this reaction pathway, Fe or another electron donor, such as NAD(P)H, catalyzes the reduction of H2O2 to water at the zinc-iron site.

15.
J Chem Phys ; 135(13): 134507, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21992324

RESUMO

The electric field dependence of the structure and dynamics of water at 77 K, i.e., below the glass transition temperature (136 K), is investigated using molecular dynamics simulations. Transitions are found at two critical field strengths, denoted E(1) and E(2). The transition around E(1)≈3.5 V/nm is characterized by the onset of significant structural disorder, a rapid increase in the orientational polarization, and a maximum in the dynamical fluctuations. At E(2)≈40 V/nm, the system crystallizes in discrete steps into a body-centered-cubic unit cell that minimizes the potential energy by simultaneous superpolarization of the water molecular dipoles and maximization of the intermolecular hydrogen bonds. The stepwise and discontinuous increase of the orientational polarization with the increasing electric field indicates that the dipole relaxation in the electric field is highly cooperative.


Assuntos
Água/química , Eletricidade , Simulação de Dinâmica Molecular , Transição de Fase , Temperatura
16.
Chem Sci ; 12(40): 13492-13505, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34777769

RESUMO

The RNA helicase (non-structural protein 13, NSP13) of SARS-CoV-2 is essential for viral replication, and it is highly conserved among the coronaviridae family, thus a prominent drug target to treat COVID-19. We present here structural models and dynamics of the helicase in complex with its native substrates based on thorough analysis of homologous sequences and existing experimental structures. We performed and analysed microseconds of molecular dynamics (MD) simulations, and our model provides valuable insights to the binding of the ATP and ssRNA at the atomic level. We identify the principal motions characterising the enzyme and highlight the effect of the natural substrates on this dynamics. Furthermore, allosteric binding sites are suggested by our pocket analysis. Our obtained structural and dynamical insights are important for subsequent studies of the catalytic function and for the development of specific inhibitors at our characterised binding pockets for this promising COVID-19 drug target.

17.
Biochim Biophys Acta Gen Subj ; 1864(7): 129579, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32135171

RESUMO

The "open" (Aopen) and "closed" (Aclosed) A-clusters of the acteyl-CoA synthase (ACS) enzyme from Moorella thermoacetica have been studied using a combined quantum mechanical (QM)/molecular mechanical (MM) approach. Geometry optimizations of the oxidized, one- and two-electron reduced Aopen state have been carried out for the fully solvated ACS enzyme, and the CO ligand has been modeled in the reduced models. Using a combination of both αopen and αclosed protein scaffolds and the positions of metal atoms in these structures, we have been able to piece together critical parts of the catalytic cycle of ACS. We have replaced the unidentified exogenous ligand in the crystal structure with CO using both a square planar and tetrahedral proximal Ni atom. A one-electron reduced A-cluster that is characterized by a proximal Ni atom in a tetrahedral coordination pattern observed in both the Aopen (lower occupancy proximal Ni) and Aclosed (proximal Zn atom) geometries with three cysteine thiolates and a modeled CO ligand demonstrates excellent agreement with the crystal structure atomic positions, particularly with the displacement of the side chain ring of Phe512 which appears to serve as a structural gate for ligand binding. The QM/MM optimized geometry of the A-cluster of ACS with an uncoordinated, oxidized proximal nickel atom in a square planar geometry demonstrates poor agreement with the atomic coordinates taken from the crystal structure. Based on these calculations, we conclude that the square planar proximal nickel coordination that has been captured in the Aopen structure does not correspond to the ligand-free, oxidized [Fe4S4]2+ - Nip2+ - Nid2+ state. Overall, these computations shed further light on the mechanistic details of protein conformational changes and electronic transitions involved in the ACS catalytic cycle.


Assuntos
Aldeído Oxirredutases , Níquel , Acetilcoenzima A , Aldeído Oxirredutases/química , Aldeído Oxirredutases/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Complexos Multienzimáticos/química , Níquel/química
18.
Elife ; 92020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32410728

RESUMO

Transport of LDL-derived cholesterol from lysosomes into the cytoplasm requires NPC1 protein; NPC1L1 mediates uptake of dietary cholesterol. We introduced single disulfide bonds into NPC1 and NPC1L1 to explore the importance of inter-domain dynamics in cholesterol transport. Using a sensitive method to monitor lysosomal cholesterol efflux, we found that NPC1's N-terminal domain need not release from the rest of the protein for efficient cholesterol export. Either introducing single disulfide bonds to constrain lumenal/extracellular domains or shortening a cytoplasmic loop abolishes transport activity by both NPC1 and NPC1L1. The widely prescribed cholesterol uptake inhibitor, ezetimibe, blocks NPC1L1; we show that residues that lie at the interface between NPC1L1's three extracellular domains comprise the drug's binding site. These data support a model in which cholesterol passes through the cores of NPC1/NPC1L1 proteins; concerted movement of various domains is needed for transfer and ezetimibe blocks transport by binding to multiple domains simultaneously.


Assuntos
Colesterol/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteína C1 de Niemann-Pick/metabolismo , Animais , Anticolesterolemiantes/farmacologia , Transporte Biológico , Ezetimiba/farmacologia , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lisossomos/efeitos dos fármacos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Simulação de Dinâmica Molecular , Proteína C1 de Niemann-Pick/química , Proteína C1 de Niemann-Pick/genética , Domínios Proteicos , Células Sf9 , Relação Estrutura-Atividade
19.
J Chem Phys ; 130(2): 024310, 2009 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19154031

RESUMO

In a two-part theoretical study, field-free orientation of OHF(-) is achieved by means of moderately intense half-cycle, infrared laser pulses. In the first step, a short linearly polarized pulse excites a superposition of rigid rotor rotational eigenstates via interaction with the permanent dipole moment of OHF(-). After the field has been switched off, pronounced molecular orientation is observed for several picoseconds. In the second step, femtosecond few-cycle laser pulses are applied to the oriented system to steer vibrational dynamics, modeled by anharmonic vibrational wave functions calculated on a potential energy surface obtained with unrestricted fourth order Moller-Plesset ab initio calculations. The result is selective bond breaking of OHF, followed by the spatial separation of dissociation products in the space-fixed frame. Due to revivals in the rotational wavepacket, product yields can be enhanced over long times.


Assuntos
Ácido Fluorídrico/química , Modelos Teóricos , Oxigênio/química , Lasers
20.
Nat Chem ; 16(3): 306-307, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429342
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA