Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(19): e2319211121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38696467

RESUMO

Gene expression varies between individuals and corresponds to a key step linking genotypes to phenotypes. However, our knowledge regarding the species-wide genetic control of protein abundance, including its dependency on transcript levels, is very limited. Here, we have determined quantitative proteomes of a large population of 942 diverse natural Saccharomyces cerevisiae yeast isolates. We found that mRNA and protein abundances are weakly correlated at the population gene level. While the protein coexpression network recapitulates major biological functions, differential expression patterns reveal proteomic signatures related to specific populations. Comprehensive genetic association analyses highlight that genetic variants associated with variation in protein (pQTL) and transcript (eQTL) levels poorly overlap (3%). Our results demonstrate that transcriptome and proteome are governed by distinct genetic bases, likely explained by protein turnover. It also highlights the importance of integrating these different levels of gene expression to better understand the genotype-phenotype relationship.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteoma , Locos de Características Quantitativas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transcriptoma , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Variação Genética , Proteômica/métodos , Genótipo , Fenótipo , Perfilação da Expressão Gênica/métodos
2.
Nat Commun ; 10(1): 476, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696819

RESUMO

Eukaryotic algae rose to ecological relevance after the Neoproterozoic Snowball Earth glaciations, but the causes for this consequential evolutionary transition remain enigmatic. Cap carbonates were globally deposited directly after these glaciations, but they are usually organic barren or thermally overprinted. Here we show that uniquely-preserved cap dolostones of the Araras Group contain exceptional abundances of a newly identified biomarker: 25,28-bisnorgammacerane. Its secular occurrence, carbon isotope systematics and co-occurrence with other demethylated terpenoids suggest a mechanistic connection to extensive microbial degradation of ciliate-derived biomass in bacterially dominated ecosystems. Declining 25,28-bisnorgammacerane concentrations, and a parallel rise of steranes over hopanes, indicate the transition from a bacterial to eukaryotic dominated ecosystem after the Marinoan deglaciation. Nutrient levels already increased during the Cryogenian and were a prerequisite, but not the ultimate driver for the algal rise. Intense predatory pressure by bacterivorous protists may have irrevocably cleared self-sustaining cyanobacterial ecosystems, thereby creating the ecological opportunity that allowed for the persistent rise of eukaryotic algae to global importance.


Assuntos
Clorófitas/metabolismo , Cianobactérias/metabolismo , Sedimentos Geológicos/química , Evolução Biológica , Carbonatos/análise , Carbonatos/metabolismo , Clorófitas/crescimento & desenvolvimento , Cianobactérias/crescimento & desenvolvimento , Ecossistema , Solo/química
3.
Orig Life Evol Biosph ; 38(2): 139-48, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18297413

RESUMO

An experimental study has been carried out on the stability of adenine (one of the five nucleic acid bases) under hydrothermal conditions. The experiments were performed in sealed autoclaves at 300 degrees C under fugacities of CO(2), N(2) and H(2) supposedly representative of those in marine hydrothermal systems on the early Earth. The composition of the gas phase was obtained from the degradation of oxalic acid, sodium nitrite and ammonium chloride, and the oxidation of metallic iron. The results of the experiments indicate that after 200 h, adenine is still present in detectable concentration in the aqueous phase. In fact, the concentration of adenine does not seem to be decreasing after approximately 24 h, which suggests that an equilibrium state may have been established with the inorganic constituents of the hydrothermal fluid. Such a conclusion is corroborated by independent thermodynamic calculations.


Assuntos
Adenina/química , Dióxido de Carbono/química , Hidrogênio/química , Nitrogênio/química , Cloreto de Amônio/química , Planeta Terra , Gases/química , Temperatura Alta , Ferro/química , Oceanos e Mares , Ácido Oxálico/química , Oxirredução , Nitrito de Sódio/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA