Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 22(3): e3002523, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442124

RESUMO

The honey bee is a powerful model system to probe host-gut microbiota interactions, and an important pollinator species for natural ecosystems and for agriculture. While bacterial biosensors can provide critical insight into the complex interplay occurring between a host and its associated microbiota, the lack of methods to noninvasively sample the gut content, and the limited genetic tools to engineer symbionts, have so far hindered their development in honey bees. Here, we built a versatile molecular tool kit to genetically modify symbionts and reported for the first time in the honey bee a technique to sample their feces. We reprogrammed the native bee gut bacterium Snodgrassella alvi as a biosensor for IPTG, with engineered cells that stably colonize the gut of honey bees and report exposure to the molecules in a dose-dependent manner through the expression of a fluorescent protein. We showed that fluorescence readout can be measured in the gut tissues or noninvasively in the feces. These tools and techniques will enable rapid building of engineered bacteria to answer fundamental questions in host-gut microbiota research.


Assuntos
Bactérias , Microbiota , Abelhas , Animais , Bactérias/genética , Agricultura , Fezes , Fluorescência
2.
PLoS Biol ; 21(7): e3002203, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37486940

RESUMO

The physiology and behavior of social organisms correlate with their social environments. However, because social environments are typically confounded by age and physical environments (i.e., spatial location and associated abiotic factors), these correlations are usually difficult to interpret. For example, associations between an individual's social environment and its gene expression patterns may result from both factors being driven by age or behavior. Simultaneous measurement of pertinent variables and quantification of the correlations between these variables can indicate whether relationships are direct (and possibly causal) or indirect. Here, we combine demographic and automated behavioral tracking with a multiomic approach to dissect the correlation structure among the social and physical environment, age, behavior, brain gene expression, and microbiota composition in the carpenter ant Camponotus fellah. Variations in physiology and behavior were most strongly correlated with the social environment. Moreover, seemingly strong correlations between brain gene expression and microbiota composition, physical environment, age, and behavior became weak when controlling for the social environment. Consistent with this, a machine learning analysis revealed that from brain gene expression data, an individual's social environment can be more accurately predicted than any other behavioral metric. These results indicate that social environment is a key regulator of behavior and physiology.


Assuntos
Formigas , Microbiota , Animais , Formigas/genética , Comportamento Social , Microbiota/genética , Encéfalo , Expressão Gênica/genética , Rede Social
3.
Mol Microbiol ; 2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37718573

RESUMO

Honey bees have emerged as a new model to study the gut-brain axis, as they exhibit complex social behaviors and cognitive abilities, while experiments with gnotobiotic bees have revealed that their gut microbiota alters both brain and behavioral phenotypes. Furthermore, while honey bee brain functions supporting a broad range of behaviors have been intensively studied for over 50 years, the gut microbiota of bees has been experimentally characterized only recently. Here, we combined six published datasets from metabolomic analyses to provide an overview of the neuroactive metabolites whose abundance in the gut, hemolymph and brain varies in presence of the gut microbiota. Such metabolites may either be produced by gut bacteria, released from the pollen grains during their decomposition by bacteria, or produced by other organs in response to different bacterial products. We describe the current state of knowledge regarding the impact of such metabolites on brain function and behavior and provide further hypotheses to explore in this emerging field of research.

4.
J Am Chem Soc ; 145(14): 8231-8241, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36977310

RESUMO

We report a detailed computational and experimental study of the fixation and reductive coupling of dinitrogen with low-valent boron compounds. Consistent with our mechanistic findings, the selectivity toward nitrogen fixation or coupling can be controlled through either steric bulk or the reaction conditions, allowing for the on-demand synthesis of nitrogen chains. The electronic structure and intriguing magnetic properties of intermediates and products of the reaction of dinitrogen with borylenes are also elucidated using high-level computational approaches.

5.
Proc Natl Acad Sci U S A ; 117(13): 7355-7362, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32179689

RESUMO

The honey bee gut microbiota influences bee health and has become an important model to study the ecology and evolution of microbiota-host interactions. Yet, little is known about the phage community associated with the bee gut, despite its potential to modulate bacterial diversity or to govern important symbiotic functions. Here we analyzed two metagenomes derived from virus-like particles, analyzed the prevalence of the identified phages across 73 bacterial metagenomes from individual bees, and tested the host range of isolated phages. Our results show that the honey bee gut virome is composed of at least 118 distinct clusters corresponding to both temperate and lytic phages and representing novel genera with a large repertoire of unknown gene functions. We find that the phage community is prevalent in honey bees across space and time and targets the core members of the bee gut microbiota. The large number and high genetic diversity of the viral clusters seems to mirror the high extent of strain-level diversity in the bee gut microbiota. We isolated eight lytic phages that target the core microbiota member Bifidobacterium asteroides, but that exhibited different host ranges at the strain level, resulting in a nested interaction network of coexisting phages and bacterial strains. Collectively, our results show that the honey bee gut virome consists of a complex and diverse phage community that likely plays an important role in regulating strain-level diversity in the bee gut and that holds promise as an experimental model to study bacteria-phage dynamics in natural microbial communities.


Assuntos
Abelhas/microbiologia , Abelhas/virologia , Animais , Bactérias/genética , Bacteriófagos/genética , Abelhas/genética , Bifidobacterium/isolamento & purificação , Bifidobacterium/virologia , Microbioma Gastrointestinal , Metagenoma , Microbiota , Simbiose/fisiologia
6.
J Am Chem Soc ; 144(48): 21872-21877, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36410000

RESUMO

Transition metal complexes with a doubly deprotonated diazomethane (CNN2-) ligand have been proposed as fleeting intermediates in nitrogen transfer reactions. However, in contrast to isoelectronic azide (N3-), well-defined examples are unknown. We here report the synthesis and characterization of isolable complexes with terminal and bridging CNN2- ligands, stabilized by platinum(II) pincer fragments. Bonding within the allenic dimetallanitrilimine core (Pt-N═N═C-Pt) was probed by oxidation of the bridging ligand. Enhanced reactivity toward [3 + 2]-cycloaddition with CO2 was obtained. Photofragmentation favors N-NC over NN-C bond cleavage as a route to cyanide and a transient metallonitrene complex.

7.
J Exp Biol ; 224(Pt 2)2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33509844

RESUMO

Insects are the most diverse group of animals and colonize almost all environments on our planet. This diversity is reflected in the structure and function of the microbial communities inhabiting the insect digestive system. As in mammals, the gut microbiota of insects can have important symbiotic functions, complementing host nutrition, facilitating dietary breakdown or providing protection against pathogens. There is an increasing number of insect models that are experimentally tractable, facilitating mechanistic studies of gut microbiota-host interactions. In this Review, we will summarize recent findings that have advanced our understanding of the molecular mechanisms underlying the symbiosis between insects and their gut microbiota. We will open the article with a general introduction to the insect gut microbiota and then turn towards the discussion of particular mechanisms and molecular processes governing the colonization of the insect gut environment as well as the diverse beneficial roles mediated by the gut microbiota. The Review highlights that, although the gut microbiota of insects is an active field of research with implications for fundamental and applied science, we are still in an early stage of understanding molecular mechanisms. However, the expanding capability to culture microbiomes and to manipulate microbe-host interactions in insects promises new molecular insights from diverse symbioses.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Insetos , Simbiose
8.
J Nutr ; 150(9): 2364-2374, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32510156

RESUMO

BACKGROUND: The root of Platycodon grandiflorus (PG) has a long-standing tradition in the Asian diet and herbal medicine, because of its anti-inflammatory and antiobesity effects. Changes in the gut microbiota can have dietary effects on host health, which suggests a relation between the 2. OBJECTIVES: The aim of our study was to investigate the relation between PG-mediated suppression of obesity and the composition and functioning of the gut microbiota. METHODS: Six-week-old male C57BL/6J mice were fed either a control diet (CON, 10% kcal from fat), a high-fat diet (HFD, 60% kcal from fat), or a PG-supplemented HFD for 18 wk. PG was administered by oral gavage at 2 g · kg body weight-1 · d-1. Body weight and food intake were monitored. Lipid metabolism, inflammation, and intestinal barrier function were determined. Amplicon sequencing of the bacterial 16S ribosomal RNA gene was used to explore gut microbiota structure, and nontargeted metabolomics analysis was performed to investigate metabolite concentrations in fecal samples. RESULTS: We found that PG significantly ameliorated HFD-induced inflammation, recovered intestinal barrier integrity (reduced permeability by 39% , P = 0.008), reduced fat accumulation by 26% (P = 0.009), and changed the expression of key genes involved in the development of white adipose tissue (P < 0.05) in HFD-fed mice to similar levels in CON mice. Moreover, PG attenuated HFD-induced changes in the gut microbiota; it especially increased Allobaculum (7.3-fold, P = 0.002) relative to HFD, whereas CON was 15.2-fold of HFD (P = 0.002). These changes by PG were associated with an increase in the production of SCFAs (butyrate and propionate, P < 0.001) and other carbohydrate-related metabolites known to have a major role in disease suppression. CONCLUSIONS: Our study demonstrated that PG beneficially changed the gut microbiota and the gut metabolome in HFD-fed mice, and suggests that the antiobesity effects of PG may be mediated via changes in gut microbiota composition and metabolic activity.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/induzido quimicamente , Obesidade/prevenção & controle , Platycodon , Animais , Composição Corporal , DNA Bacteriano , Ácidos Graxos/metabolismo , Fezes/microbiologia , Inflamação , Intestinos/efeitos dos fármacos , Intestinos/fisiologia , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Bacteriano , RNA Ribossômico 16S
9.
PLoS Biol ; 15(12): e2003467, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29232373

RESUMO

It is presently unclear how much individual community members contribute to the overall metabolic output of a gut microbiota. To address this question, we used the honey bee, which harbors a relatively simple and remarkably conserved gut microbiota with striking parallels to the mammalian system and importance for bee health. Using untargeted metabolomics, we profiled metabolic changes in gnotobiotic bees that were colonized with the complete microbiota reconstituted from cultured strains. We then determined the contribution of individual community members in mono-colonized bees and recapitulated our findings using in vitro cultures. Our results show that the honey bee gut microbiota utilizes a wide range of pollen-derived substrates, including flavonoids and outer pollen wall components, suggesting a key role for degradation of recalcitrant secondary plant metabolites and pollen digestion. In turn, multiple species were responsible for the accumulation of organic acids and aromatic compound degradation intermediates. Moreover, a specific gut symbiont, Bifidobacterium asteroides, stimulated the production of host hormones known to impact bee development. While we found evidence for cross-feeding interactions, approximately 80% of the identified metabolic changes were also observed in mono-colonized bees, with Lactobacilli being responsible for the largest share of the metabolic output. These results show that, despite prolonged evolutionary associations, honey bee gut bacteria can independently establish and metabolize a wide range of compounds in the gut. Our study reveals diverse bacterial functions that are likely to contribute to bee health and provide fundamental insights into how metabolic activities are partitioned within gut communities.


Assuntos
Bactérias/metabolismo , Abelhas/metabolismo , Abelhas/microbiologia , Microbioma Gastrointestinal , Animais , Bactérias/isolamento & purificação , Fermentação , Flavonoides/metabolismo , Cadeia Alimentar , Microbioma Gastrointestinal/fisiologia , Metabolômica , Nucleosídeos/metabolismo , Pólen/metabolismo
10.
PLoS Genet ; 13(10): e1007077, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29073136

RESUMO

Host-targeting type IV secretion systems (T4SS) evolved from conjugative T4SS machineries that mediate interbacterial plasmid transfer. However, the origins of effectors secreted by these virulence devices have remained largely elusive. Previous work showed that some effectors exhibit homology to toxins of bacterial toxin-antitoxin modules, but the evolutionary trajectories underlying these ties had not been resolved. We previously reported that FicT toxins of FicTA toxin-antitoxin modules disrupt cellular DNA topology via their enzymatic FIC (filamentation induced by cAMP) domain. Intriguingly, the FIC domain of the FicT toxin VbhT of Bartonella schoenbuchensis is fused to a type IV secretion signal-the BID (Bep intracellular delivery) domain-similar to the Bartonella effector proteins (Beps) that are secreted into eukaryotic host cells via the host-targeting VirB T4SS. In this study, we show that the VbhT toxin is an interbacterial effector protein secreted via the conjugative Vbh T4SS that is closely related to the VirB T4SS and encoded by plasmid pVbh of B. schoenbuchensis. We therefore propose that the Vbh T4SS together with its effector VbhT represent an evolutionary missing link on a path that leads from a regular conjugation system and FicTA toxin-antitoxin modules to the VirB T4SS and the Beps. Intriguingly, phylogenetic analyses revealed that the fusion of FIC and BID domains has probably occurred independently in VbhT and the common ancestor of the Beps, suggesting parallel evolutionary paths. Moreover, several other examples of TA module toxins that are bona fide substrates of conjugative T4SS indicate that their recruitment as interbacterial effectors is prevalent and serves yet unknown biological functions in the context of bacterial conjugation. We propose that the adaptation for interbacterial transfer favors the exaptation of FicT and other TA module toxins as inter-kingdom effectors and may thus constitute an important stepping stone in the evolution of host-targeted effector proteins.


Assuntos
Antitoxinas/metabolismo , Sistemas de Secreção Bacterianos/genética , Sistemas de Secreção Bacterianos/metabolismo , Toxinas Bacterianas/metabolismo , Bartonella/genética , Bartonella/patogenicidade , Sequência de Aminoácidos , Antitoxinas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Infecções por Bartonella/microbiologia , Conjugação Genética , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Plasmídeos , Homologia de Sequência , Virulência
11.
J Allergy Clin Immunol ; 144(1): 157-170.e8, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30768991

RESUMO

BACKGROUND: Diet-induced obesity and food allergies increase in tandem, but a potential cause-and-effect relationship between these diseases of affluence remains to be tested. OBJECTIVE: We sought to test the role of high dietary fat intake, diet-induced obesity, and associated changes in gut microbial community structure on food allergy pathogenesis. METHODS: Mice were fed a high-fat diet (HFD) for 12 weeks before food allergen sensitization on an atopic dermatitis-like skin lesion, followed by intragastric allergen challenge to induce experimental food allergy. Germ-free animals were colonized with a signature HFD or lean microbiota for 8 weeks before induction of food allergy. Food-induced allergic responses were quantified by using a clinical allergy score, serum IgE levels, serum mouse mast cell protease 1 concentrations, and type 2 cytokine responses. Accumulation of intestinal mast cells was examined by using flow cytometry and chloroacetate esterase tissue staining. Changes in the gut microbial community structure were assessed by using high-throughput 16S ribosomal DNA gene sequencing. RESULTS: HFD-induced obesity potentiates food-induced allergic responses associated with dysregulated intestinal effector mast cell responses, increased intestinal permeability, and gut dysbiosis. An HFD-associated microbiome was transmissible to germ-free mice, with the gut microbial community structure of recipients segregating according to the microbiota input source. Independent of an obese state, an HFD-associated gut microbiome was sufficient to confer enhanced susceptibility to food allergy. CONCLUSION: These findings identify HFD-induced microbial alterations as risk factors for experimental food allergy and uncouple a pathogenic role of an HFD-associated microbiome from obesity. Postdieting microbiome alterations caused by overindulgence of dietary fat might increase susceptibility to food allergy.


Assuntos
Dieta Hiperlipídica , Hipersensibilidade Alimentar/microbiologia , Microbioma Gastrointestinal , Animais , DNA Bacteriano/análise , Disbiose/sangue , Disbiose/microbiologia , Feminino , Hipersensibilidade Alimentar/sangue , Imunoglobulina E/sangue , Masculino , Camundongos Endogâmicos C57BL , Obesidade/sangue , Obesidade/microbiologia
12.
Mol Biol Evol ; 35(2): 451-464, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29161442

RESUMO

Gene transfer agents (GTAs) are domesticated bacteriophages that have evolved into molecular machines for the transfer of bacterial DNA. Despite their widespread nature and their biological implications, the mechanisms and selective forces that drive the emergence of GTAs are still poorly understood. Two GTAs have been identified in the Alphaproteobacteria: the RcGTA, which is widely distributed in a broad range of species; and the BaGTA, which has a restricted host range that includes vector-borne intracellular bacteria of the genus Bartonella. The RcGTA packages chromosomal DNA randomly, whereas the BaGTA particles contain a relatively higher fraction of genes for host interaction factors that are amplified from a nearby phage-derived origin of replication. In this study, we compare the BaGTA genes with homologous bacteriophage genes identified in the genomes of Bartonella species and close relatives. Unlike the BaGTA, the prophage genes are neither present in all species, nor inserted into homologous genomic sites. Phylogenetic inferences and substitution frequency analyses confirm codivergence of the BaGTA with the host genome, as opposed to multiple integration and recombination events in the prophages. Furthermore, the organization of segments flanking the BaGTA differs from that of the prophages by a few rearrangement events, which have abolished the normal coordination between phage genome replication and phage gene expression. Based on the results of our comparative analysis, we propose a model for how a prophage may be transformed into a GTA that transfers amplified bacterial DNA segments.


Assuntos
Bartonella/virologia , Evolução Biológica , Transferência Genética Horizontal , Modelos Genéticos , Prófagos/fisiologia , Bartonella/genética , Amplificação de Genes , Genoma Bacteriano , Padrões de Herança , Lisogenia , Replicação Viral
13.
Mol Ecol ; 28(9): 2224-2237, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30864192

RESUMO

Bacteria that engage in long-standing associations with particular hosts are expected to evolve host-specific adaptations that limit their capacity to thrive in other environments. Consistent with this, many gut symbionts seem to have a limited host range, based on community profiling and phylogenomics. However, few studies have experimentally investigated host specialization of gut symbionts and the underlying mechanisms have largely remained elusive. Here, we studied host specialization of a dominant gut symbiont of social bees, Lactobacillus Firm5. We show that Firm5 strains isolated from honey bees and bumble bees separate into deep-branching host-specific phylogenetic lineages. Despite their divergent evolution, colonization experiments show that bumble bee strains are capable of colonizing the honey bee gut. However, they were less successful than honey bee strains, and competition with honey bee strains completely abolished their colonization. In contrast, honey bee strains of divergent phylogenetic lineages were able to coexist within individual bees. This suggests that both host selection and interbacterial competition play important roles in host specialization. Using comparative genomics of 27 Firm5 isolates, we found that the genomes of honey bee strains harbour more carbohydrate-related functions than bumble bee strains, possibly providing a competitive advantage in the honey bee gut. Remarkably, most of the genes encoding carbohydrate-related functions were not conserved among the honey bee strains, which suggests that honey bees can support a metabolically more diverse community of Firm5 strains than bumble bees. These findings advance our understanding of the genomic changes underlying host specialization.


Assuntos
Abelhas/microbiologia , Microbioma Gastrointestinal/fisiologia , Genoma Bacteriano , Lactobacillus/genética , Simbiose/genética , Animais , Bacteriocinas/genética , Genes Bacterianos , Glicosídeo Hidrolases/genética , Lactobacillus/isolamento & purificação , Filogenia , Suíça
14.
Proc Natl Acad Sci U S A ; 113(48): 13887-13892, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27849596

RESUMO

Animal guts are often colonized by host-specialized bacterial species to the exclusion of other transient microorganisms, but the genetic basis of colonization ability is largely unknown. The bacterium Snodgrassella alvi is a dominant gut symbiont in honey bees, specialized in colonizing the hindgut epithelium. We developed methods for transposon-based mutagenesis in S. alvi and, using high-throughput DNA sequencing, screened genome-wide transposon insertion (Tn-seq) and transcriptome (RNA-seq) libraries to characterize both the essential genome and the genes facilitating host colonization. Comparison of Tn-seq results from laboratory cultures and from monoinoculated worker bees reveal that 519 of 2,226 protein-coding genes in S. alvi are essential in culture, whereas 399 are not essential but are beneficial for gut colonization. Genes facilitating colonization fall into three broad functional categories: extracellular interactions, metabolism, and stress responses. Extracellular components with strong fitness benefits in vivo include trimeric autotransporter adhesins, O antigens, and type IV pili (T4P). Experiments with T4P mutants establish that T4P in S. alvi likely function in attachment and biofilm formation, with knockouts experiencing a competitive disadvantage in vivo. Metabolic processes promoting colonization include essential amino acid biosynthesis and iron acquisition pathways, implying nutrient scarcity within the hindgut environment. Mechanisms to deal with various stressors, such as for the repair of double-stranded DNA breaks and protein quality control, are also critical in vivo. This genome-wide study identifies numerous genetic networks underlying colonization by a gut commensal in its native host environment, including some known from more targeted studies in other host-microbe symbioses.


Assuntos
Abelhas/genética , Microbioma Gastrointestinal/genética , Simbiose/genética , Transcriptoma/genética , Animais , Abelhas/microbiologia , Biofilmes/crescimento & desenvolvimento , Quebras de DNA de Cadeia Dupla , Gammaproteobacteria/genética , Trato Gastrointestinal/microbiologia , Genoma de Inseto/genética , Sequenciamento de Nucleotídeos em Larga Escala , Especificidade de Hospedeiro/genética , Mutagênese/genética , Filogenia
15.
Nature ; 482(7383): 107-10, 2012 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-22266942

RESUMO

Fic proteins that are defined by the ubiquitous FIC (filamentation induced by cyclic AMP) domain are known to catalyse adenylylation (also called AMPylation); that is, the transfer of AMP onto a target protein. In mammalian cells, adenylylation of small GTPases through Fic proteins injected by pathogenic bacteria can cause collapse of the actin cytoskeleton and cell death. It is unknown how this potentially deleterious adenylylation activity is regulated in the widespread Fic proteins that are found in all domains of life and that are thought to have critical roles in intrinsic signalling processes. Here we show that FIC-domain-mediated adenylylation is controlled by a conserved mechanism of ATP-binding-site obstruction that involves an inhibitory α-helix (α(inh)) with a conserved (S/T)XXXE(G/N) motif, and that in this mechanism the invariable glutamate competes with ATP γ-phosphate binding. Consistent with this, FIC-domain-mediated growth arrest of bacteria by the VbhT toxin of Bartonella schoenbuchensis is intermolecularly repressed by the VbhA antitoxin through tight binding of its α(inh) to the FIC domain of VbhT, as shown by structure and function analysis. Furthermore, structural comparisons with other bacterial Fic proteins, such as Fic of Neisseria meningitidis and of Shewanella oneidensis, show that α(inh) frequently constitutes an amino-terminal or carboxy-terminal extension to the FIC domain, respectively, partially obstructing the ATP binding site in an intramolecular manner. After mutation of the inhibitory motif in various Fic proteins, including the human homologue FICD (also known as HYPE), adenylylation activity is considerably boosted, consistent with the anticipated relief of inhibition. Structural homology modelling of all annotated Fic proteins indicates that inhibition by α(inh) is universal and conserved through evolution, as the inhibitory motif is present in ∼90% of all putatively adenylylation-active FIC domains, including examples from all domains of life and from viruses. Future studies should reveal how intrinsic or extrinsic factors modulate adenylylation activity by weakening the interaction of α(inh) with the FIC active site.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , AMP Cíclico/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Bartonella , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Catálise , Domínio Catalítico , Escherichia coli , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Viabilidade Microbiana , Modelos Moleculares , Peso Molecular , Neisseria meningitidis , Nucleotidiltransferases , Estrutura Terciária de Proteína , Shewanella
16.
Mol Ecol ; 26(9): 2576-2590, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28207182

RESUMO

Gut bacteria engage in various symbiotic interactions with their host and impact gut immunity and homeostasis in different ways. In honey bees, the gut microbiota is composed of a relatively simple, but highly specialized bacterial community. One of its members, the gammaproteobacterium Frischella perrara induces the so-called scab phenotype, a dark-coloured band that develops on the epithelial surface of the pylorus. To understand the underlying host response, we analysed transcriptome changes in the pylorus in response to bacterial colonization. We find that, in contrast to the gut bacterium Snodgrassella alvi, F. perrara causes strong activation of the host immune system. Besides pattern recognition receptors, antimicrobial peptides and transporter genes, the melanization cascade was upregulated by F. perrara, suggesting that the scab phenotype corresponds to a melanization response of the host. In addition, transcriptome analysis of hive bees with and without the scab phenotype showed that F. perrara also stimulates the immune system under in-hive conditions in the presence of other gut bacterial species. Collectively, our study demonstrates that the presence of F. perrara influences gut immunity and homeostasis in the pylorus. This may have implications for bee health, because F. perrara prevalence differs between colonies and increased abundance of this bacterium has been shown to correlate with dietary alteration and impaired host development. Our transcriptome analysis sets the groundwork for investigating the interplay of bee gut symbionts with the host immune system.


Assuntos
Abelhas/imunologia , Abelhas/microbiologia , Gammaproteobacteria/fisiologia , Trato Gastrointestinal/microbiologia , Simbiose , Animais , Regulação da Expressão Gênica , Genes de Insetos , Transcriptoma
17.
PLoS Genet ; 10(9): e1004596, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25210772

RESUMO

Microbial communities in animal guts are composed of diverse, specialized bacterial species, but little is known about how gut bacteria diversify to produce genetically and ecologically distinct entities. The gut microbiota of the honey bee, Apis mellifera, presents a useful model, because it consists of a small number of characteristic bacterial species, each showing signs of diversification. Here, we used single-cell genomics to study the variation within two species of the bee gut microbiota: Gilliamella apicola and Snodgrassella alvi. For both species, our analyses revealed extensive variation in intraspecific divergence of protein-coding genes but uniformly high levels of 16S rRNA similarity. In both species, the divergence of 16S rRNA loci appears to have been curtailed by frequent recombination within populations, while other genomic regions have continuously diverged. Furthermore, gene repertoires differ markedly among strains in both species, implying distinct metabolic capabilities. Our results show that, despite minimal divergence at 16S rRNA genes, in situ diversification occurs within gut communities and generates bacterial lineages with distinct ecological niches. Therefore, important dimensions of microbial diversity are not evident from analyses of 16S rRNA, and single cell genomics has potential to elucidate processes of bacterial diversification.


Assuntos
Bactérias/genética , Abelhas/genética , Abelhas/microbiologia , Trato Gastrointestinal/microbiologia , Simbiose/genética , Animais , Biodiversidade , Genômica/métodos , Metagenoma/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos
18.
Proc Natl Acad Sci U S A ; 111(31): 11509-14, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25053814

RESUMO

Gilliamella apicola and Snodgrassella alvi are dominant members of the honey bee (Apis spp.) and bumble bee (Bombus spp.) gut microbiota. We generated complete genomes of the type strains G. apicola wkB1(T) and S. alvi wkB2(T) (isolated from Apis), as well as draft genomes for four other strains from Bombus. G. apicola and S. alvi were found to occupy very different metabolic niches: The former is a saccharolytic fermenter, whereas the latter is an oxidizer of carboxylic acids. Together, they may form a syntrophic network for partitioning of metabolic resources. Both species possessed numerous genes [type 6 secretion systems, repeats in toxin (RTX) toxins, RHS proteins, adhesins, and type IV pili] that likely mediate cell-cell interactions and gut colonization. Variation in these genes could account for the host fidelity of strains observed in previous phylogenetic studies. Here, we also show the first experimental evidence, to our knowledge, for this specificity in vivo: Strains of S. alvi were able to colonize their native bee host but not bees of another genus. Consistent with specific, long-term host association, comparative genomic analysis revealed a deep divergence and little or no gene flow between Apis and Bombus gut symbionts. However, within a host type (Apis or Bombus), we detected signs of horizontal gene transfer between G. apicola and S. alvi, demonstrating the importance of the broader gut community in shaping the evolution of any one member. Our results show that host specificity is likely driven by multiple factors, including direct host-microbe interactions, microbe-microbe interactions, and social transmission.


Assuntos
Abelhas/genética , Abelhas/microbiologia , Trato Gastrointestinal/microbiologia , Genômica , Especificidade de Hospedeiro/genética , Simbiose/genética , Animais , Abelhas/metabolismo , Evolução Molecular , Transferência Genética Horizontal/genética , Genes de Insetos/genética , Microbiota/genética , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico
20.
Int J Syst Evol Microbiol ; 66(1): 414-421, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26537852

RESUMO

Here, we report the culture and characterization of an alphaproteobacterium of the order Rhizobiales, isolated from the gut of the honey bee Apis mellifera. Strain PEB0122T shares >95 % 16S rRNA gene sequence similarity with species of the genus Bartonella, a group of mammalian pathogens transmitted by bloodsucking arthropods. Phylogenetic analyses showed that PEB0122T and related strains from the honey bee gut form a sister clade of the genus Bartonella. Optimal growth of strain PEB0122T was obtained on solid media supplemented with defibrinated sheep blood under microaerophilic conditions at 35-37 °C, which is consistent with the cultural characteristics of other species of the genus Bartonella. Reduced growth of strain PEB0122T also occurred under aerobic conditions. The rod-shaped cells of strain PEB0122T had a mean length of 1.2-1.8 µm and revealed hairy surface structures. Strain PEB0122T was positive for catalase, cytochrome c oxidase, urease and nitrate reductase. The fatty acid composition was comparable to those of other species of the genus Bartonella, with palmitic acid (C16 : 0) and isomers of 18- and 19-carbon chains being the most abundant. The genomic DNA G+C content of PEB0122T was determined to be about 45.5 mol%. The high 16S rRNA gene sequence similarity with species of Bartonella and its close phylogenetic position suggest that strain PEB0122T represents a novel species within the genus Bartonella, for which we propose the name Bartonella apis sp. nov. The type strain is PEB0122T ( = NCIMB 14961T = DSM 29779T).


Assuntos
Bartonella/classificação , Abelhas/microbiologia , Trato Gastrointestinal/microbiologia , Filogenia , Simbiose , Animais , Técnicas de Tipagem Bacteriana , Bartonella/genética , Bartonella/isolamento & purificação , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA