Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(8): 4329-4339, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35438783

RESUMO

RNA structure and function are intimately tied to RNA binding protein recognition and regulation. Posttranslational modifications are chemical modifications which can control protein biology. The role of PTMs in the regulation RBPs is not well understood, in part due to a lacking analysis of PTM deposition on RBPs. Herein, we present an analysis of posttranslational modifications (PTMs) on RNA binding proteins (RBPs; a PTM RBP Atlas). We curate published datasets and primary literature to understand the landscape of PTMs and use protein-protein interaction data to understand and potentially provide a framework for understanding which enzymes are controlling PTM deposition and removal on the RBP landscape. Intersection of our data with The Cancer Genome Atlas also provides researchers understanding of mutations that would alter PTM deposition. Additional characterization of the RNA-protein interface provided from in-cell UV crosslinking experiments provides a framework for hypotheses about which PTMs could be regulating RNA binding and thus RBP function. Finally, we provide an online database for our data that is easy to use for the community. It is our hope our efforts will provide researchers will an invaluable tool to test the function of PTMs controlling RBP function and thus RNA biology.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo
2.
Nat Methods ; 17(3): 311-318, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32015544

RESUMO

Tissues and organs are composed of diverse cell types, which poses a major challenge for cell-type-specific profiling of gene expression. Current metabolic labeling methods rely on exogenous pyrimidine analogs that are only incorporated into RNA in cells expressing an exogenous enzyme. This approach assumes that off-target cells cannot incorporate these analogs. We disprove this assumption and identify and characterize the enzymatic pathways responsible for high background incorporation. We demonstrate that mammalian cells can incorporate uracil analogs and characterize the enzymatic pathways responsible for high background incorporation. To overcome these limitations, we developed a new small molecule-enzyme pair consisting of uridine/cytidine kinase 2 and 2'-azidouridine. We demonstrate that 2'-azidouridine is only incorporated in cells expressing uridine/cytidine kinase 2 and characterize selectivity mechanisms using molecular dynamics and X-ray crystallography. Furthermore, this pair can be used to purify and track RNA from specific cellular populations, making it ideal for high-resolution cell-specific RNA labeling. Overall, these results reveal new aspects of mammalian salvage pathways and serve as a new benchmark for designing, characterizing and evaluating methodologies for cell-specific labeling of biomolecules.


Assuntos
RNA/química , Uracila/química , Animais , Azidas/química , Biotinilação , Domínio Catalítico , Técnicas de Cocultura , Desoxiuridina/análogos & derivados , Desoxiuridina/química , Células HEK293 , Células HeLa , Humanos , Cinética , Camundongos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Células NIH 3T3 , Núcleosídeo-Fosfato Quinase/metabolismo , Domínios Proteicos , RNA Interferente Pequeno/genética , Uridina/química , Uridina Quinase/metabolismo
3.
Nucleic Acids Res ; 49(20): 11868-11882, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34634799

RESUMO

RNA molecules can fold into complex structures and interact with trans-acting factors to control their biology. Recent methods have been focused on developing novel tools to measure RNA structure transcriptome-wide, but their utility to study and predict RNA-protein interactions or RNA processing has been limited thus far. Here, we extend these studies with the first transcriptome-wide mapping method for cataloging RNA solvent accessibility, icLASER. By combining solvent accessibility (icLASER) with RNA flexibility (icSHAPE) data, we efficiently predict RNA-protein interactions transcriptome-wide and catalog RNA polyadenylation sites by RNA structure alone. These studies showcase the power of designing novel chemical approaches to studying RNA biology. Further, our study exemplifies merging complementary methods to measure RNA structure inside cells and its utility for predicting transcriptome-wide interactions that are critical for control of and regulation by RNA structure. We envision such approaches can be applied to studying different cell types or cells under varying conditions, using RNA structure and footprinting to characterize cellular interactions and processing involving RNA.


Assuntos
RNA/química , Transcriptoma , Células HeLa , Humanos , Poliadenilação , Ligação Proteica , RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Análise de Sequência de RNA/métodos
4.
J Am Chem Soc ; 144(16): 7085-7088, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35416650

RESUMO

Tissues and organs are composed of many diverse cell types, making cell-specific gene expression profiling a major challenge. Herein we report that endogenous enzymes, unique to a cell of interest, can be utilized to enable cell-specific metabolic labeling of RNA. We demonstrate that appropriately designed "caged" nucleosides can be rendered active by serving as a substrate for cancer-cell specific enzymes to enable RNA metabolic labeling, only in cancer cells. We envision that the ease and high stringency of our approach will enable expression analysis of tumor cells in complex environments.


Assuntos
Neoplasias , RNA , Nucleosídeos/metabolismo , RNA/metabolismo
5.
Emerg Infect Dis ; 28(9): 1770-1776, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35867051

RESUMO

Wastewater monitoring of SARS-CoV-2 enables early detection and monitoring of the COVID-19 disease burden in communities and can track specific variants of concern. We determined proportions of the Omicron and Delta variants across 30 municipalities covering >75% of the province of Alberta (population 4.5 million), Canada, during November 2021-January 2022. Larger cities Calgary and Edmonton exhibited more rapid emergence of Omicron than did smaller and more remote municipalities. Notable exceptions were Banff, a small international resort town, and Fort McMurray, a medium-sized northern community that has many workers who fly in and out regularly. The integrated wastewater signal revealed that the Omicron variant represented close to 100% of SARS-CoV-2 burden by late December, before the peak in newly diagnosed clinical cases throughout Alberta in mid-January. These findings demonstrate that wastewater monitoring offers early and reliable population-level results for establishing the extent and spread of SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Alberta/epidemiologia , COVID-19/epidemiologia , Humanos , SARS-CoV-2/genética , Águas Residuárias
6.
Nucleic Acids Res ; 48(11): 6294-6309, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32402057

RESUMO

Recognition of highly degenerate mammalian splice sites by the core spliceosomal machinery is regulated by several protein factors that predominantly bind exonic splicing motifs. These are postulated to be single-stranded in order to be functional, yet knowledge of secondary structural features that regulate the exposure of exonic splicing motifs across the transcriptome is not currently available. Using transcriptome-wide RNA structural information we show that retained introns in mouse are commonly flanked by a short (≲70 nucleotide), highly base-paired segment upstream and a predominantly single-stranded exonic segment downstream. Splicing assays with select pre-mRNA substrates demonstrate that loops immediately upstream of the introns contain pre-mRNA-specific splicing enhancers, the substitution or hybridization of which impedes splicing. Additionally, the exonic segments flanking the retained introns appeared to be more enriched in a previously identified set of hexameric exonic splicing enhancer (ESE) sequences compared to their spliced counterparts, suggesting that base-pairing in the exonic segments upstream of retained introns could be a means for occlusion of ESEs. The upstream exonic loops of the test substrate promoted recruitment of splicing factors and consequent pre-mRNA structural remodeling, leading up to assembly of the early spliceosome. These results suggest that disruption of exonic stem-loop structures immediately upstream (but not downstream) of the introns regulate alternative splicing events, likely through modulating accessibility of splicing factors.


Assuntos
Pareamento de Bases , Éxons , Íntrons , Splicing de RNA , Adenoviridae/genética , Animais , Sequência de Bases , Elementos Facilitadores Genéticos , Éxons/genética , Inativação Gênica , Íntrons/genética , Camundongos , Células-Tronco Embrionárias Murinas , Mutação , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA/genética , Spliceossomos/metabolismo , Transcriptoma/genética , Globinas beta/genética
7.
Alzheimers Dement ; 18(10): 1765-1778, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35142046

RESUMO

The P522R variant of PLCG2, expressed by microglia, is associated with reduced risk of Alzheimer's disease (AD). Yet, the impact of this protective mutation on microglial responses to AD pathology remains unknown. Chimeric AD and wild-type mice were generated by transplanting PLCG2-P522R or isogenic wild-type human induced pluripotent stem cell microglia. At 7 months of age, single-cell and bulk RNA sequencing, and histological analyses were performed. The PLCG2-P522R variant induced a significant increase in microglial human leukocyte antigen (HLA) expression and the induction of antigen presentation, chemokine signaling, and T cell proliferation pathways. Examination of immune-intact AD mice further demonstrated that the PLCG2-P522R variant promotes the recruitment of CD8+ T cells to the brain. These data provide the first evidence that the PLCG2-P522R variant increases the capacity of microglia to recruit T cells and present antigens, promoting a microglial transcriptional state that has recently been shown to be reduced in AD patient brains.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Camundongos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Apresentação de Antígeno , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Quimiocinas/metabolismo , Modelos Animais de Doenças , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos Transgênicos , Microglia/metabolismo
8.
J Am Chem Soc ; 143(12): 4519-4523, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33750115

RESUMO

Therapeutic targeting of allele-specific single nucleotide mutations in RNA is a major challenge in biology and medicine. Herein, we describe the utility of the XNAzyme X10-23 to knock down allele-specific mRNA sequences in cells. We demonstrate the value of this approach by targeting the "undruggable" mutation G12V in oncogenic KRAS. Our results demonstrate how catalytic XNAs could be employed to suppress the expression of mRNAs carrying disease-causing mutations that are difficult to target at the protein level with small molecule therapeutics.


Assuntos
DNA Catalítico/metabolismo , RNA/metabolismo , Alelos , RNA/genética
9.
Chembiochem ; 22(7): 1114-1121, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32737940

RESUMO

RNA molecules can fold into complex two- and three-dimensional shapes that are critical for their function. Chemical probes have long been utilized to interrogate RNA structure and are now considered invaluable resources in the goal of relating structure to function. Recently, the power of deep sequencing and careful chemical probe design have merged, permitting researchers to obtain a holistic understanding of how RNA structure can be utilized to control RNA biology transcriptome-wide. Within this review, we outline the recent advancements in chemical probe design for interrogating RNA structures inside cells and discuss the recent advances in our understanding of RNA biology through the lens of chemical probing.


Assuntos
Sondas Moleculares/química , RNA/química , Transcriptoma , Adutos de DNA/química , DNA Complementar/química , DNA Complementar/metabolismo , Sondas Moleculares/metabolismo , Conformação de Ácido Nucleico , RNA/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo
10.
Nucleic Acids Res ; 47(1): 43-55, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30476193

RESUMO

Chemical probing methods are crucial to our understanding of the structure and function of RNA molecules. The majority of chemical methods used to probe RNA structure report on Watson-Crick pairing, but tertiary structure parameters such as solvent accessibility can provide an additional layer of structural information, particularly in RNA-protein complexes. Herein we report the development of Light Activated Structural Examination of RNA by high-throughput sequencing, or LASER-Seq, for measuring RNA structure in cells with deep sequencing. LASER relies on a light-generated nicotinoyl nitrenium ion to form covalent adducts with the C8 position of adenosine and guanosine. Reactivity is governed by the accessibility of C8 to the light-generated probe. We compare structure probing by RT-stop and mutational profiling (MaP), demonstrating that LASER can be integrated with both platforms for RNA structure analyses. We find that LASER reactivity correlates with solvent accessibility across the entire ribosome, and that LASER can be used to rapidly survey for ligand binding sites in an unbiased fashion. LASER has a particular advantage in this last application, as it readily modifies paired nucleotides, enabling the identification of binding sites and conformational changes in highly structured RNA.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Complexos Multiproteicos/química , Conformação de Ácido Nucleico , RNA/genética , Adenosina/química , Sítios de Ligação/genética , Guanosina/química , Ligantes , Complexos Multiproteicos/genética , Mutação , RNA/química , Ribossomos/química , Ribossomos/genética , Solventes/química
11.
J Bacteriol ; 201(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30642989

RESUMO

The airway fluids of cystic fibrosis (CF) patients contain local pH gradients and are more acidic than those of healthy individuals. pH is a critical factor that is often overlooked in studies seeking to recapitulate the infection microenvironment. We sought to determine the impact of pH on the physiology of a ubiqituous yet understudied microbe, Stenotrophomonas maltophilia Phylogenomics was first used to reconstruct evolutionary relationships between 74 strains of S. maltophilia (59 from CF patients). Neither the core genome (2,158 genes) nor the accessory genome (11,978 genes) distinguish the CF and non-CF isolates; however, strains from similar isolation sources grouped into the same subclades. We grew two human and six CF S. maltophilia isolates from different subclades at a range of pH values and observed impaired growth and altered antibiotic tolerances at pH 5. Transcriptomes revealed increased expression of both antibiotic resistance and DNA repair genes in acidic conditions. Although the gene expression profiles of S. maltophilia in lab cultures and CF sputum were distinct, we found that the same genes associated with low pH were also expressed during infection, and the higher pH cultures were more similar to sputum metatranscriptomes. Our findings suggest that S. maltophilia is not well adapted to acidity and may cope with low pH by expressing stress response genes and colonizing less acidic microenvironments. As a whole, our study underlines the impact of microenvironments on bacterial colonization and adaptation in CF infections.IMPORTANCE Understanding bacterial responses to physiological conditions is an important priority for combating opportunistic infections. The majority of CF patients succumb to inflammation and necrosis in the airways, arising from chronic infection due to ineffective mucociliary clearance. Steep pH gradients characterize the CF airways but are not often incorporated in standard microbiology culture conditions. Stenotrophomonas maltophilia is a prevalent CF opportunistic pathogen also found in many disparate environments, yet this bacterium's contribution to CF lung damage and its response to changing environmental factors remain largely understudied. Here, we show that pH impacts the physiology and antibiotic susceptibility of S. maltophilia, with implications for the development of relevant in vitro models and assessment of antibiotic sensitivity.


Assuntos
Adaptação Fisiológica , Fibrose Cística/complicações , Infecções por Bactérias Gram-Negativas/microbiologia , Stenotrophomonas maltophilia/efeitos dos fármacos , Stenotrophomonas maltophilia/fisiologia , Perfilação da Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/isolamento & purificação
12.
J Pharmacol Exp Ther ; 367(3): 452-460, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30287477

RESUMO

In chronic kidney disease (CKD), the gut microbiome is altered and bacterial-derived uremic toxins promote systemic inflammation and cardiovascular disease. Ferric citrate complex is a dietary phosphate binder prescribed for patients with end-stage kidney disease to treat hyperphosphatemia and secondary hyperparathyroidism. Iron is an essential nutrient in both microbes and mammals. This study was undertaken to test the hypothesis that the large iron load administered with ferric citrate in CKD may significantly change the gut microbiome. Male Sprague-Dawley rats underwent 5/6 nephrectomy to induce CKD. Normal control and CKD rats were randomized to regular chow or a 4% ferric citrate diet for 6 weeks. Fecal and cecal microbial DNA was analyzed via 16S ribosomal RNA gene sequencing on the Illumina MiSeq system. CKD rats had lower abundances of Firmicutes and Lactobacillus compared with normal rats and had lower overall gut microbial diversity. CKD rats treated with ferric citrate had improved hemoglobin and creatinine clearance and amelioration of hyperphosphatemia and hypertension. Ferric citrate treatment increased bacterial diversity in CKD rats almost to levels observed in control rats. The tryptophanase-possessing families Verrucomicrobia, Clostridiaceae, and Enterobacteriaceae were increased by ferric citrate treatment. The uremic toxins indoxyl sulfate and p-cresyl sulfate were not increased with ferric citrate treatment. Verrucomicrobia was largely represented by Akkermansia muciniphila, which has important roles in mucin degradation and gut barrier integrity. In summary, ferric citrate therapy in CKD rats was associated with significant changes in the gut microbiome and beneficial kidney and blood pressure parameters.


Assuntos
Compostos Férricos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Fosfatos/metabolismo , Insuficiência Renal Crônica/microbiologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Ceco/microbiologia , DNA Bacteriano/genética , Fezes/microbiologia , Rim/microbiologia , Masculino , RNA Ribossômico 16S/genética , Ratos , Ratos Sprague-Dawley
13.
Environ Microbiol ; 19(6): 2334-2347, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28276174

RESUMO

Abiotic and biotic forces shape the structure and evolution of microbial populations. We investigated forces that shape the spatial and temporal population structure of Sulfolobus islandicus by comparing geochemical and molecular analysis from seven hot springs in five regions sampled over 3 years in Yellowstone National Park. Through deep amplicon sequencing, we uncovered 148 unique alleles at two loci whose relative frequency provides clear evidence for independent populations in different hot springs. Although geography controls regional geochemical composition and population differentiation, temporal changes in population were not explained by corresponding variation in geochemistry. The data suggest that the influence of extinction, bottleneck events and/or selective sweeps within a spring and low migration between springs shape these populations. We suggest that hydrologic events such as storm events and surface snowmelt runoff destabilize smaller hot spring environments with smaller populations and result in high variation in the S. islandicus population over time. Therefore, physical abiotic features such as hot spring size and position in the landscape are important factors shaping the stability and diversity of the S. islandicus meta-population within Yellowstone National Park.


Assuntos
Fontes Termais/microbiologia , Sulfolobus/genética , Sulfolobus/isolamento & purificação , Alelos , Biodiversidade , Geografia , Fontes Termais/química , Parques Recreativos , Filogenia , Dinâmica Populacional , Sulfolobus/metabolismo
14.
Biochem Soc Trans ; 41(6): 1431-6, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24256233

RESUMO

Host-pathogen co-evolution is a significant force which shapes the ecology and evolution of all types of organisms, and such interactions are driven by resistance and immunity mechanisms of the host. Diversity of resistance and immunity can affect the co-evolutionary trajectory of both host and pathogen. The microbial CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system is one host immunity mechanism which offers a tractable model for examining the dynamics of diversity in an immune system. In the present article, we review CRISPR variation observed in a variety of natural populations, examine the forces which can push CRISPRs towards high or low diversity, and investigate the consequences of various levels of diversity on microbial populations.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/imunologia , Salmonella/imunologia , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/imunologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Salmonella/genética
15.
Mar Pollut Bull ; 196: 115557, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37776739

RESUMO

Oil spilled in marine environments can settle to the seafloor through aggregation and sedimentation processes. This has been predicted to be especially relevant in the Arctic due to plankton blooms initiated by melting sea ice. These conditions exist in the Kivalliq region in Nunavut, Canada, where elevated shipping traffic has increased the risk of accidental spills. Experimental microcosms combining surface sediment and crude oil were incubated at 4 °C over 21 weeks to evaluate the biodegradation potential of seabed microbiomes. Sediments sampled near the communities of Arviat and Chesterfield Inlet were assessed for biodegradation capabilities by combining hydrocarbon geochemistry with 16S rRNA gene and metagenomic sequencing, revealing decreased microbial diversity but enrichment of oil-degrading taxa. Alkane and aromatic hydrocarbon losses corresponded to detection of genes and genomes that encode enzymes for aerobic biodegradation of these compounds, pointing to the utility of marine microbiome surveys for predicting the fate of oil released into Arctic marine environments.


Assuntos
Microbiota , Poluição por Petróleo , Petróleo , Petróleo/metabolismo , Nunavut , RNA Ribossômico 16S/genética , Hidrocarbonetos/metabolismo , Canadá , Biodegradação Ambiental
16.
Nat Struct Mol Biol ; 30(12): 1947-1957, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38087090

RESUMO

JTE-607 is an anticancer and anti-inflammatory compound and its active form, compound 2, directly binds to and inhibits CPSF73, the endonuclease for the cleavage step in pre-messenger RNA (pre-mRNA) 3' processing. Surprisingly, compound 2-mediated inhibition of pre-mRNA cleavage is sequence specific and the drug sensitivity is predominantly determined by sequences flanking the cleavage site (CS). Using massively parallel in vitro assays, we identified key sequence features that determine drug sensitivity. We trained a machine learning model that can predict poly(A) site (PAS) relative sensitivity to compound 2 and provide the molecular basis for understanding the impact of JTE-607 on PAS selection and transcription termination genome wide. We propose that CPSF73 and associated factors bind to the CS region in a sequence-dependent manner and the interaction affinity determines compound 2 sensitivity. These results have not only elucidated the mechanism of action of JTE-607, but also unveiled an evolutionarily conserved sequence specificity of the mRNA 3' processing machinery.


Assuntos
Precursores de RNA , Processamento Pós-Transcricional do RNA , Linhagem Celular , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
J Exp Med ; 220(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36584406

RESUMO

Hematopoietic stem cell transplantation (HSCT) can replace endogenous microglia with circulation-derived macrophages but has high mortality. To mitigate the risks of HSCT and expand the potential for microglia replacement, we engineered an inhibitor-resistant CSF1R that enables robust microglia replacement. A glycine to alanine substitution at position 795 of human CSF1R (G795A) confers resistance to multiple CSF1R inhibitors, including PLX3397 and PLX5622. Biochemical and cell-based assays show no discernable gain or loss of function. G795A- but not wildtype-CSF1R expressing macrophages efficiently engraft the brain of PLX3397-treated mice and persist after cessation of inhibitor treatment. To gauge translational potential, we CRISPR engineered human-induced pluripotent stem cell-derived microglia (iMG) to express G795A. Xenotransplantation studies demonstrate that G795A-iMG exhibit nearly identical gene expression to wildtype iMG, respond to inflammatory stimuli, and progressively expand in the presence of PLX3397, replacing endogenous microglia to fully occupy the brain. In sum, we engineered a human CSF1R variant that enables nontoxic, cell type, and tissue-specific replacement of microglia.


Assuntos
Microglia , Engenharia de Proteínas , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Animais , Humanos , Camundongos , Aminopiridinas/farmacologia , Encéfalo/metabolismo , Microglia/metabolismo , Engenharia de Proteínas/métodos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Terapia Baseada em Transplante de Células e Tecidos/métodos
18.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961595

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the first exon of the HTT gene encoding huntingtin. Prior reports have established a correlation between CAG expanded HTT and altered gene expression. However, the mechanisms leading to disruption of RNA processing in HD remain unclear. Here, our analysis of the reported HTT protein interactome identifies interactions with known RNA-binding proteins (RBPs). Total, long-read sequencing and targeted RASL-seq of RNAs from cortex and striatum of the HD mouse model R6/2 reveals increased exon skipping which is confirmed in Q150 and Q175 knock-in mice and in HD human brain. We identify the RBP TDP-43 and the N6-methyladenosine (m6A) writer protein methyltransferase 3 (METTL3) to be upstream regulators of exon skipping in HD. Along with this novel mechanistic insight, we observe decreased nuclear localization of TDP-43 and cytoplasmic accumulation of phosphorylated TDP-43 in HD mice and human brain. In addition, TDP-43 co-localizes with HTT in human HD brain forming novel nuclear aggregate-like bodies distinct from mutant HTT inclusions or previously observed TDP-43 pathologies. Binding of TDP-43 onto RNAs encoding HD-associated differentially expressed and aberrantly spliced genes is decreased. Finally, m6A RNA modification is reduced on RNAs abnormally expressed in striatum from HD R6/2 mouse brain, including at clustered sites adjacent to TDP-43 binding sites. Our evidence supports TDP-43 loss of function coupled with altered m6A modification as a novel mechanism underlying alternative splicing/unannotated exon usage in HD and highlights the critical nature of TDP-43 function across multiple neurodegenerative diseases.

19.
Mol Neurodegener ; 16(1): 50, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301296

RESUMO

BACKGROUND: Disease-associated microglia (DAMs), that surround beta-amyloid plaques, represent a transcriptionally-distinct microglial profile in Alzheimer's disease (AD). Activation of DAMs is dependent on triggering receptor expressed on myeloid cells 2 (TREM2) in mouse models and the AD TREM2-R47H risk variant reduces microglial activation and plaque association in human carriers. Interestingly, TREM2 has also been identified as a microglial lipid-sensor, and recent data indicates lipid droplet accumulation in aged microglia, that is in turn associated with a dysfunctional proinflammatory phenotype. However, whether lipid droplets (LDs) are present in human microglia in AD and how the R47H mutation affects this remains unknown. METHODS: To determine the impact of the TREM2 R47H mutation on human microglial function in vivo, we transplanted wild-type and isogenic TREM2-R47H iPSC-derived microglial progenitors into our recently developed chimeric Alzheimer mouse model. At 7 months of age scRNA-seq and histological analyses were performed. RESULTS: Here we report that the transcriptome of human wild-type TREM2 and isogenic TREM2-R47H DAM xenografted microglia (xMGs), isolated from chimeric AD mice, closely resembles that of human atherosclerotic foam cells. In addition, much like foam cells, plaque-bound xMGs are highly enriched in lipid droplets. Somewhat surprisingly and in contrast to a recent in vitro study, TREM2-R47H mutant xMGs exhibit an overall reduction in the accumulation of lipid droplets in vivo. Notably, TREM2-R47H xMGs also show overall reduced reactivity to plaques, including diminished plaque-proximity, reduced CD9 expression, and lower secretion of plaque-associated APOE. CONCLUSIONS: Altogether, these results indicate lipid droplet accumulation occurs in human DAM xMGs in AD, but is reduced in TREM2-R47H DAM xMGs, as it occurs secondary to TREM2-mediated changes in plaque proximity and reactivity.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Gotículas Lipídicas/patologia , Glicoproteínas de Membrana , Microglia/patologia , Receptores Imunológicos , Animais , Quimera , Modelos Animais de Doenças , Xenoenxertos , Humanos , Glicoproteínas de Membrana/genética , Camundongos , Microglia/transplante , Receptores Imunológicos/genética
20.
J Clin Invest ; 131(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33945510

RESUMO

Chronic cellular stress associated with neurodegenerative disease can result in the persistence of stress granule (SG) structures, membraneless organelles that form in response to cellular stress. In Huntington's disease (HD), chronic expression of mutant huntingtin generates various forms of cellular stress, including activation of the unfolded protein response and oxidative stress. However, it has yet to be determined whether SGs are a feature of HD neuropathology. We examined the miRNA composition of extracellular vesicles (EVs) present in the cerebrospinal fluid (CSF) of patients with HD and show that a subset of their target mRNAs were differentially expressed in the prefrontal cortex. Of these targets, SG components were enriched, including the SG-nucleating Ras GTPase-activating protein-binding protein 1 (G3BP1). We investigated localization and levels of G3BP1 and found a significant increase in the density of G3BP1-positive granules in the cortex and hippocampus of R6/2 transgenic mice and in the superior frontal cortex of the brains of patients with HD. Intriguingly, we also observed that the SG-associated TAR DNA-binding protein 43 (TDP43), a nuclear RNA/DNA binding protein, was mislocalized to the cytoplasm of G3BP1 granule-positive HD cortical neurons. These findings suggest that G3BP1 SG dynamics may play a role in the pathophysiology of HD.


Assuntos
Grânulos Citoplasmáticos/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hipocampo/metabolismo , Doença de Huntington/metabolismo , Neurônios/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Córtex Pré-Frontal/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Animais , Grânulos Citoplasmáticos/patologia , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Feminino , Hipocampo/patologia , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/patologia , Proteínas de Ligação a Poli-ADP-Ribose/genética , Córtex Pré-Frontal/patologia , Transporte Proteico/genética , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA