Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Endocrinol (Lausanne) ; 13: 1044670, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531496

RESUMO

Obesity-driven (type 2) diabetes (T2D), the most common metabolic disorder, both increases the incidence of all molecular subtypes of breast cancer and decreases survival in postmenopausal women. Despite this clear link, T2D and the associated dysfunction of diverse tissues is often not considered during the standard of care practices in oncology and, moreover, is treated as exclusion criteria for many emerging clinical trials. These guidelines have caused the biological mechanisms that associate T2D and breast cancer to be understudied. Recently, it has been illustrated that the breast tumor microenvironment (TME) composition and architecture, specifically the surrounding cellular and extracellular structures, dictate tumor progression and are directly relevant for clinical outcomes. In addition to the epithelial cancer cell fraction, the breast TME is predominantly made up of cancer-associated fibroblasts, adipocytes, and is often infiltrated by immune cells. During T2D, signal transduction among these cell types is aberrant, resulting in a dysfunctional breast TME that communicates with nearby cancer cells to promote oncogenic processes, cancer stem-like cell formation, pro-metastatic behavior and increase the risk of recurrence. As these cells are non-malignant, despite their signaling abnormalities, data concerning their function is never captured in DNA mutational databases, thus we have limited insight into mechanism from publicly available datasets. We suggest that abnormal adipocyte and immune cell exhaustion within the breast TME in patients with obesity and metabolic disease may elicit greater transcriptional plasticity and cellular heterogeneity within the expanding population of malignant epithelial cells, compared to the breast TME of a non-obese, metabolically normal patient. These challenges are particularly relevant to cancer disparities settings where the fraction of patients seen within the breast medical oncology practice also present with co-morbid obesity and metabolic disease. Within this review, we characterize the changes to the breast TME during T2D and raise urgent molecular, cellular and translational questions that warrant further study, considering the growing prevalence of T2D worldwide.


Assuntos
Neoplasias da Mama , Diabetes Mellitus Tipo 2 , Humanos , Feminino , Microambiente Tumoral/fisiologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Neoplasias da Mama/patologia , Adipócitos/metabolismo , Obesidade/complicações , Obesidade/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-36644690

RESUMO

Comorbid Type 2 diabetes (T2D), a metabolic complication of obesity, associates with worse cancer outcomes for prostate, breast, head and neck, colorectal and several other solid tumors. However, the molecular mechanisms remain poorly understood. Emerging evidence shows that exosomes carry miRNAs in blood that encode the metabolic status of originating tissues and deliver their cargo to target tissues to modulate expression of critical genes. Exosomal communication potentially connects abnormal metabolism to cancer progression. Here, we hypothesized that T2D plasma exosomes induce epithelial-mesenchymal transition (EMT) and immune checkpoints in prostate cancer cells. We demonstrate that plasma exosomes from subjects with T2D induce EMT features in prostate cancer cells and upregulate the checkpoint genes CD274 and CD155. We demonstrate that specific exosomal miRNAs that are differentially abundant in plasma of T2D adults compared to nondiabetic controls (miR374a-5p, miR-93-5p and let-7b-3p) are delivered to cancer cells, thereby regulating critical target genes. We build on our previous reports showing BRD4 controls migration and dissemination of castration-resistant prostate cancer, and transcription of key EMT genes, to show that T2D exosomes require BRD4 to drive EMT and immune ligand expression. We validate our findings with gene set enrichment analysis of human prostate tumor tissue in TGCA genomic data. These results suggest novel, non-invasive approaches to evaluate and potentially block progression of prostate and other cancers in patients with comorbid T2D.

3.
Sci Signal ; 14(710): eabj2807, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34813359

RESUMO

Obesity and metabolic diseases, such as insulin resistance and type 2 diabetes (T2D), are associated with metastatic breast cancer in postmenopausal women. Here, we investigated the critical cellular and molecular factors behind this link. We found that primary human adipocytes shed extracellular vesicles, specifically exosomes, that induced the expression of genes associated with epithelial-to-mesenchymal transition (EMT) and cancer stem­like cell (CSC) traits in cocultured breast cancer cell lines. Transcription of these genes was further increased in cells exposed to exosomes shed from T2D patient­derived adipocytes or insulin-resistant adipocytes and required the epigenetic reader proteins BRD2 and BRD4 in recipient cells. The thrombospondin family protein TSP5, which is associated with cancer, was more abundant in exosomes from T2D or insulin-resistant adipocytes and partially contributed to EMT in recipient cells. Bioinformatic analysis of breast cancer patient tissue showed that greater coexpression of COMP (which encodes TSP5) and BRD2 or BRD3 correlated with poorer prognosis, specifically decreased distant metastasis­free survival. Our findings reveal a mechanism of exosome-mediated cross-talk between metabolically abnormal adipocytes and breast cancer cells that may promote tumor aggressiveness in patients with T2D.


Assuntos
Neoplasias da Mama , Diabetes Mellitus Tipo 2 , Exossomos , Adipócitos , Mama , Feminino , Humanos
4.
Cell Rep ; 37(6): 109992, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34758319

RESUMO

To elucidate mechanisms by which T cells eliminate leukemia, we study donor lymphocyte infusion (DLI), an established immunotherapy for relapsed leukemia. We model T cell dynamics by integrating longitudinal, multimodal data from 94,517 bone marrow-derived single T cell transcriptomes in addition to chromatin accessibility and single T cell receptor sequencing from patients undergoing DLI. We find that responsive tumors are defined by enrichment of late-differentiated T cells before DLI and rapid, durable expansion of early differentiated T cells after treatment, highly similar to "terminal" and "precursor" exhausted subsets, respectively. Resistance, in contrast, is defined by heterogeneous T cell dysfunction. Surprisingly, early differentiated T cells in responders mainly originate from pre-existing and novel clonotypes recruited to the leukemic microenvironment, rather than the infusion. Our work provides a paradigm for analyzing longitudinal single-cell profiling of scenarios beyond adoptive cell therapy and introduces Symphony, a Bayesian approach to infer regulatory circuitry underlying T cell subsets, with broad relevance to exhaustion antagonists across cancers.


Assuntos
Imunoterapia Adotiva/métodos , Leucemia/imunologia , Ativação Linfocitária/imunologia , Transfusão de Linfócitos/métodos , Recidiva Local de Neoplasia/imunologia , Transplante de Células-Tronco/métodos , Linfócitos T/imunologia , Evolução Clonal , Humanos , Leucemia/patologia , Leucemia/terapia , Estudos Longitudinais , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/terapia , Doadores de Tecidos , Transplante Homólogo
5.
Sci Transl Med ; 12(561)2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938797

RESUMO

Leukemic relapse remains a major barrier to successful allogeneic hematopoietic stem cell transplantation (allo-HSCT) for aggressive hematologic malignancies. The basis for relapse of advanced lymphoid malignancies remains incompletely understood and may involve escape from the graft-versus-leukemia (GvL) effect. We hypothesized that for patients with chronic lymphocytic leukemia (CLL) treated with allo-HSCT, leukemic cell-intrinsic features influence transplant outcomes by directing the evolutionary trajectories of CLL cells. Integrated genetic, transcriptomic, and epigenetic analyses of CLL cells from 10 patients revealed that the clinical kinetics of post-HSCT relapse are shaped by distinct molecular dynamics. Early relapses after allo-HSCT exhibited notable genetic stability; single CLL cell transcriptional analysis demonstrated a cellular heterogeneity that was static over time. In contrast, CLL cells relapsing late after allo-HSCT displayed notable genetic evolution and evidence of neoantigen depletion, consistent with marked single-cell transcriptional shifts that were unique to each patient. We observed a greater rate of epigenetic change for late relapses not seen in early relapses or relapses after chemotherapy alone, suggesting that the selection pressures of the GvL bottleneck are unlike those imposed by chemotherapy. No selective advantage for human leukocyte antigen (HLA) loss was observed, even when present in pretransplant subpopulations. Gain of stem cell modules was a common signature associated with leukemia relapse regardless of posttransplant relapse kinetics. These data elucidate the biological pathways that underlie GvL resistance and posttransplant relapse.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia Linfocítica Crônica de Células B , Efeito Enxerto vs Leucemia , Antígenos HLA , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/terapia , Transplante Homólogo
7.
Life Sci Alliance ; 1(5): e201800190, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30456390

RESUMO

The contribution of the tumor microenvironment to pancreatic ductal adenocarcinoma (PDAC) development is currently unclear. We therefore examined the consequences of disrupting paracrine Hedgehog (HH) signaling in PDAC stroma. Herein, we show that ablation of the key HH signaling gene Smoothened (Smo) in stromal fibroblasts led to increased proliferation of pancreatic tumor cells. Furthermore, Smo deletion resulted in proteasomal degradation of the tumor suppressor PTEN and activation of oncogenic protein kinase B (AKT) in fibroblasts. An unbiased proteomic screen identified RNF5 as a novel E3 ubiquitin ligase responsible for degradation of phosphatase and tensin homolog (PTEN) in Smo-null fibroblasts. Ring Finger Protein 5 (Rnf5) knockdown or pharmacological inhibition of glycogen synthase kinase 3ß (GSKß), the kinase that marks PTEN for ubiquitination, rescued PTEN levels and reversed the oncogenic phenotype, identifying a new node of PTEN regulation. In PDAC patients, low stromal PTEN correlated with reduced overall survival. Mechanistically, PTEN loss decreased hydraulic permeability of the extracellular matrix, which was reversed by hyaluronidase treatment. These results define non-cell autonomous tumor-promoting mechanisms activated by disruption of the HH/PTEN axis and identifies new targets for restoring stromal tumor-suppressive functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA