RESUMO
The crises of climate change and biodiversity loss are interlinked and must be addressed jointly. A proposed solution for reducing reliance on fossil fuels, and thus mitigating climate change, is the transition from conventional combustion-engine to electric vehicles. This transition currently requires additional mineral resources, such as nickel and cobalt used in car batteries, presently obtained from land-based mines. Most options to meet this demand are associated with some biodiversity loss. One proposal is to mine the deep seabed, a vast, relatively pristine and mostly unexplored region of our planet. Few comparisons of environmental impacts of solely expanding land-based mining versus extending mining to the deep seabed for the additional resources exist and for biodiversity only qualitative. Here, we present a framework that facilitates a holistic comparison of relative ecosystem impacts by mining, using empirical data from relevant environmental metrics. This framework (Environmental Impact Wheel) includes a suite of physicochemical and biological components, rather than a few selected metrics, surrogates, or proxies. It is modified from the "recovery wheel" presented in the International Standards for the Practice of Ecological Restoration to address impacts rather than recovery. The wheel includes six attributes (physical condition, community composition, structural diversity, ecosystem function, external exchanges and absence of threats). Each has 3-5 sub attributes, in turn measured with several indicators. The framework includes five steps: (1) identifying geographic scope; (2) identifying relevant spatiotemporal scales; (3) selecting relevant indicators for each sub-attribute; (4) aggregating changes in indicators to scores; and (5) generating Environmental Impact Wheels for targeted comparisons. To move forward comparisons of land-based with deep seabed mining, thresholds of the indicators that reflect the range in severity of environmental impacts are needed. Indicators should be based on clearly articulated environmental goals, with objectives and targets that are specific, measurable, achievable, relevant, and time bound.
Assuntos
Mineração , Biodiversidade , Ecossistema , Meio Ambiente , Conservação dos Recursos Naturais , Mudança ClimáticaRESUMO
The protein calexcitin was originally identified in molluscan photoreceptor neurons as a 20â kDa molecule which was up-regulated and phosphorylated following a Pavlovian conditioning protocol. Subsequent studies showed that calexcitin regulates the voltage-dependent potassium channel and the calcium-dependent potassium channel as well as causing the release of calcium ions from the endoplasmic reticulum (ER) by binding to the ryanodine receptor. A crystal structure of calexcitin from the squid Loligo pealei showed that the fold is similar to that of another signalling protein, calmodulin, the N- and C-terminal domains of which are known to separate upon calcium binding, allowing interactions with the target protein. Phosphorylation of calexcitin causes it to translocate to the cell membrane, where its effects on membrane excitability are exerted and, accordingly, L. pealei calexcitin contains two protein kinase C phosphorylation sites (Thr61 and Thr188). Thr-to-Asp mutations which mimic phosphorylation of the protein were introduced and crystal structures of the corresponding single and double mutants were determined, which suggest that the C-terminal phosphorylation site (Thr188) exerts the greatest effects on the protein structure. Extensive NMR studies were also conducted, which demonstrate that the wild-type protein predominantly adopts a more open conformation in solution than the crystallographic studies have indicated and, accordingly, normal-mode dynamic simulations suggest that it has considerably greater capacity for flexible motion than the X-ray studies had suggested. Like calmodulin, calexcitin consists of four EF-hand motifs, although only the first three EF-hands of calexcitin are involved in binding calcium ions; the C-terminal EF-hand lacks the appropriate amino acids. Hence, calexcitin possesses two functional EF-hands in close proximity in its N-terminal domain and one functional calcium site in its C-terminal domain. There is evidence that the protein has two markedly different affinities for calcium ions, the weaker of which is most likely to be associated with binding of calcium ions to the protein during neuronal excitation. In the current study, site-directed mutagenesis has been used to abolish each of the three calcium-binding sites of calexcitin, and these experiments suggest that it is the single calcium-binding site in the C-terminal domain of the protein which is likely to have a sensory role in the neuron.
Assuntos
Proteínas de Ligação ao Cálcio/química , Decapodiformes/química , Simulação de Dinâmica Molecular , Proteínas do Tecido Nervoso/química , Substituição de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Cristalografia por Raios X , Decapodiformes/genética , Decapodiformes/metabolismo , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Estrutura Terciária de Proteína , Relação Estrutura-AtividadeRESUMO
The enzyme porphobilinogen deaminase (PBGD; hydroxymethylbilane synthase; EC 2.5.1.61) catalyses an early step of the tetrapyrrole-biosynthesis pathway in which four molecules of the monopyrrole porphobilinogen are condensed to form a linear tetrapyrrole. The enzyme possesses a dipyrromethane cofactor, which is covalently linked by a thioether bridge to an invariant cysteine residue (Cys241 in the Bacillus megaterium enzyme). The cofactor is extended during the reaction by the sequential addition of the four substrate molecules, which are released as a linear tetrapyrrole product. Expression in Escherichia coli of a His-tagged form of B. megaterium PBGD has permitted the X-ray analysis of the enzyme from this species at high resolution, showing that the cofactor becomes progressively oxidized to the dipyrromethene and dipyrromethanone forms. In previously solved PBGD structures, the oxidized cofactor is in the dipyromethenone form, in which both pyrrole rings are approximately coplanar. In contrast, the oxidized cofactor in the B. megaterium enzyme appears to be in the dipyrromethanone form, in which the C atom at the bridging α-position of the outer pyrrole ring is very clearly in a tetrahedral configuration. It is suggested that the pink colour of the freshly purified protein is owing to the presence of the dipyrromethene form of the cofactor which, in the structure reported here, adopts the same conformation as the fully reduced dipyrromethane form.
Assuntos
Bacillus megaterium/enzimologia , Hidroximetilbilano Sintase/química , Porfobilinogênio/análogos & derivados , Sequência de Aminoácidos , Bacillus megaterium/metabolismo , Cristalização , Cristalografia por Raios X , Hidroximetilbilano Sintase/metabolismo , Dados de Sequência Molecular , Oxirredução , Porfobilinogênio/química , Porfobilinogênio/metabolismoRESUMO
The enzyme 2,4'-dihydroxyacetophenone dioxygenase (DAD) catalyses the conversion of 2,4'-dihydroxyacetophenone to 4-hydroxybenzoic acid and formic acid with the incorporation of molecular oxygen. Whilst the vast majority of dioxygenases cleave within the aromatic ring of the substrate, DAD is very unusual in that it is involved in C-C bond cleavage in a substituent of the aromatic ring. There is evidence that the enzyme is a homotetramer of 20.3â kDa subunits, each containing nonhaem iron, and its sequence suggests that it belongs to the cupin family of dioxygenases. In this paper, the first X-ray structure of a DAD enzyme from the Gram-negative bacterium Alcaligenes sp. 4HAP is reported, at a resolution of 2.2â Å. The structure establishes that the enzyme adopts a cupin fold, forming dimers with a pronounced hydrophobic interface between the monomers. The catalytic iron is coordinated by three histidine residues (76, 78 and 114) within a buried active-site cavity. The iron also appears to be tightly coordinated by an additional ligand which was putatively assigned as a carbonate dianion since this fits the electron density optimally, although it might also be the product formate. The modelled carbonate is located in a position which is highly likely to be occupied by the α-hydroxyketone group of the bound substrate during catalysis. Modelling of a substrate molecule in this position indicates that it will interact with many conserved amino acids in the predominantly hydrophobic active-site pocket where it undergoes peroxide radical-mediated heterolysis.
Assuntos
Alcaligenes/enzimologia , Dioxigenases/química , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de AminoácidosRESUMO
The enzyme porphobilinogen deaminase (PBGD; hydroxymethylbilane synthase; EC 2.5.1.61) catalyses a key early step of the haem- and chlorophyll-biosynthesis pathways in which four molecules of the monopyrrole porphobilinogen are condensed to form a linear tetrapyrrole. The active site possesses an unusual dipyrromethane cofactor which is extended during the reaction by the sequential addition of the four substrate molecules. The cofactor is linked covalently to the enzyme through a thioether bridge to the invariant Cys254. Until recently, structural data have only been available for the Escherichia coli and human forms of the enzyme. The expression of a codon-optimized gene for PBGD from Arabidopsis thaliana (thale cress) has permitted for the first time the X-ray analysis of the enzyme from a higher plant species at 1.45â Å resolution. The A. thaliana structure differs appreciably from the E. coli and human forms of the enzyme in that the active site is shielded by an extensive well defined loop region (residues 60-70) formed by highly conserved residues. This loop is completely disordered and uncharacterized in the E. coli and human PBGD structures. The new structure establishes that the dipyrromethane cofactor of the enzyme has become oxidized to the dipyrromethenone form, with both pyrrole groups approximately coplanar. Modelling of an intermediate of the elongation process into the active site suggests that the interactions observed between the two pyrrole rings of the cofactor and the active-site residues are highly specific and are most likely to represent the catalytically relevant binding mode. During the elongation cycle, it is thought that domain movements cause the bound cofactor and polypyrrole intermediates to move past the catalytic machinery in a stepwise manner, thus permitting the binding of additional substrate moieties and completion of the tetrapyrrole product. Such a model would allow the condensation reactions to be driven by the extensive interactions that are observed between the enzyme and the dipyrromethane cofactor, coupled with acid-base catalysis provided by the invariant aspartate residue Asp95.
Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Domínio Catalítico , Hidroximetilbilano Sintase/química , Tetrapirróis/química , Apoenzimas/química , Cristalografia por Raios X , Ligação ProteicaRESUMO
The enzyme porphobilinogen deaminase (PBGD; hydroxymethylbilane synthase; EC 2.5.1.61) catalyses an early step of the tetrapyrrole-biosynthesis pathway in which four molecules of the monopyrrole porphobilinogen are condensed to form a linear tetrapyrrole. The enzyme possesses a dipyrromethane cofactor which is covalently linked by a thioether bridge to an invariant cysteine residue. Expression in Escherichia coli of a His-tagged form of Bacillus megaterium PBGD permitted the crystallization and preliminary X-ray analysis of the enzyme from this species at high resolution.
Assuntos
Bacillus megaterium/enzimologia , Proteínas de Bactérias/química , Hidroximetilbilano Sintase/química , Tetrapirróis/química , Cristalização , Cristalografia por Raios XRESUMO
The analysis reported here describes detailed structural studies of endothiapepsin (the aspartic proteinase from Endothia parasitica), with and without bound inhibitors, and human pepsin 3b. Comparison of multiple crystal structures of members of the aspartic proteinase family has revealed small but significant differences in domain orientation in different crystal forms. In this paper, it is shown that these differences in domain orientation do not necessarily correlate with the presence or absence of bound inhibitors, but appear to stem at least partly from crystal contacts mediated by sulfate ions. However, since the same inherent flexibility of the structure is observed for other enzymes in this family such as human pepsin, the native structure of which is also reported here, the observed domain movements may well have implications for the mechanism of catalysis.
Assuntos
Ácido Aspártico Proteases/química , Ascomicetos/enzimologia , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Proteases/antagonistas & inibidores , Cristalografia por Raios X , Humanos , Modelos Moleculares , Pepsina A/antagonistas & inibidores , Pepsina A/química , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Conformação Proteica , Estrutura Terciária de ProteínaRESUMO
The enzyme porphobilinogen deaminase (PBGD; hydroxymethylbilane synthase; EC 2.5.1.61) catalyses a key early step of the haem-biosynthesis pathway in which four molecules of the monopyrrole porphobilinogen are condensed to form a linear tetrapyrrole. The enzyme possesses a dipyrromethane cofactor which is covalently linked by a thioether bridge to an invariant cysteine residue. Since PBGD catalyses a reaction which is common to the biosynthesis of both haem and chlorophyll, structural studies of a plant PBGD enzyme offer great potential for the discovery of novel herbicides. Until recently, structural data have only been available for the Escherichia coli and human forms of the enzyme. Expression in E. coli of a codon-optimized gene for Arabidopsis thaliana PBGD has permitted for the first time the crystallization and preliminary X-ray analysis of the enzyme from a plant species at high resolution.
Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Hidroximetilbilano Sintase/química , Tetrapirróis/biossíntese , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cristalização , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Hidroximetilbilano Sintase/metabolismo , Modelos Moleculares , Porfobilinogênio/química , Porfobilinogênio/metabolismo , Conformação Proteica , Tetrapirróis/químicaRESUMO
Burkholderia pseudomallei, the causative agent of melioidosis, possesses a type III protein secretion apparatus that is similar to those found in Salmonella and Shigella. A major function of these secretion systems is to inject virulence-associated proteins into target cells of the host organism. The bipD gene of B. pseudomallei encodes a secreted virulence factor that is similar in sequence and is most likely to be functionally analogous to IpaD from Shigella and SipD from Salmonella. Proteins in this family are thought to act as extracellular chaperones at the tip of the secretion needle to help the hydrophobic translocator proteins enter the target cell membrane, where they form a pore and may also link the translocon pore with the secretion needle. BipD has been crystallized in a monoclinic crystal form that diffracted X-rays to 1.5 A resolution and the structure was refined to an R factor of 16.1% and an Rfree of 19.8% at this resolution. The putative dimer interface that was observed in previous crystal structures was retained and a larger surface area was buried in the new crystal form.
Assuntos
Proteínas de Bactérias/química , Burkholderia pseudomallei/química , Proteínas de Membrana/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Terciária de ProteínaRESUMO
Noroviruses are the predominant cause of human epidemic nonbacterial gastroenteritis. Viral replication requires a cysteine protease that cleaves a 200â kDa viral polyprotein into its constituent functional parts. Here, the crystallization of the recombinant protease from the Southampton norovirus is described. Whilst the native crystals were found to diffract only to medium resolution (2.9â Å), cocrystals of an inhibitor complex diffracted X-rays to 1.7â Å resolution. The polypeptide inhibitor (Ac-EFQLQ-propenyl ethyl ester) possesses an amino-acid sequence designed to match the substrate specificity of the enzyme, but was synthesized with a reactive Michael acceptor group at the C-terminal end.
Assuntos
Endopeptidases/química , Norovirus/enzimologia , Inibidores de Proteases/química , Domínios e Motivos de Interação entre Proteínas , Cristalização , Cristalografia por Raios X , Endopeptidases/metabolismo , Cinética , Inibidores de Proteases/metabolismoRESUMO
The enzyme L-threonine dehydrogenase catalyses the NAD(+)-dependent conversion of L-threonine to 2-amino-3-ketobutyrate, which is the first reaction of a two-step biochemical pathway involved in the metabolism of threonine to glycine. Here, the crystallization and preliminary crystallographic analysis of L-threonine dehydrogenase (Tk-TDH) from the hyperthermophilic organism Thermococcus kodakaraensis KOD1 is reported. This threonine dehydrogenase consists of 350 amino acids, with a molecular weight of 38 kDa, and was prepared using an Escherichia coli expression system. The purified native protein was crystallized using the hanging-drop vapour-diffusion method and crystals grew in the tetragonal space group P4(3)2(1)2, with unit-cell parameters a = b = 124.5, c = 271.1 A. Diffraction data were collected to 2.6 A resolution and preliminary analysis indicates that there are four molecules in the asymmetric unit of the crystal.
Assuntos
Oxirredutases do Álcool/química , Proteínas Arqueais/química , Thermococcus/enzimologia , Oxirredutases do Álcool/metabolismo , Proteínas Arqueais/fisiologia , Temperatura Baixa , Cristalização , Cristalografia por Raios X , Estabilidade Enzimática/fisiologia , Concentração de Íons de HidrogênioRESUMO
The three-dimensional structure of the neuronal calcium-sensor protein calexcitin from Loligo pealei has been determined by X-ray analysis at a resolution of 1.8A. Calexcitin is up-regulated following Pavlovian conditioning and has been shown to regulate potassium channels and the ryanodine receptor. Thus, calexcitin is implicated in neuronal excitation and plasticity. The overall structure is predominantly helical and compact with a pronounced hydrophobic core between the N and C-terminal domains of the molecule. The structure consists of four EF-hand motifs although only the first three EF hands are involved in binding calcium ions; the C-terminal EF-hand lacks the amino acids required for calcium binding. The overall structure is quite similar to that of the sarcoplasmic calcium-binding protein from Amphioxus although the sequence identity is very low at 31%. The structure shows that the two amino acids of calexcitin phosphorylated by protein kinase C are close to the domain interface in three dimensions and thus phosphorylation is likely to regulate the opening of the domains that is probably required for binding to target proteins. There is evidence that calexcitin is a GTPase and the residues, which have been implicated by mutagenesis in its GTPase activity, are in a short but highly conserved region of 3(10) helix close to the C terminus. This helix resides in a large loop that is partly sandwiched between the N and C-terminal domains suggesting that GTP binding may also require or may cause domain opening. The structure possesses a pronounced electropositive crevice in the vicinity of the 3(10) helix, that might provide an initial docking site for the triphosphate group of GTP. These findings elucidate a number of the reported functions of calexcitin with implications for neuronal signalling.
Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao GTP/química , Aprendizagem/fisiologia , Loligo/química , Memória/fisiologia , Conformação Proteica , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Cristalografia por Raios X , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Neurônios/metabolismo , Selenometionina/química , Alinhamento de SequênciaRESUMO
Burkoldheria pseudomallei is a Gram-negative bacterium that possesses a protein secretion system similar to those found in Salmonella and Shigella. Recent work has indicated that the protein encoded by the BipD gene of B. pseudomallei is an important secreted virulence factor. BipD is similar in sequence to IpaD from Shigella and SipD from Salmonella and is therefore likely to be a translocator protein in the type-III secretion system of B. pseudomallei. The crystal structure of BipD has been solved at a resolution of 2.1 A revealing the detailed tertiary fold of the molecule. The overall structure is appreciably extended and consists of a bundle of antiparallel alpha-helical segments with two small beta-sheet regions. The longest helices of the molecule form a four-helix bundle and most of the remaining secondary structure elements (three helices and two three-stranded beta-sheets) are formed by the region linking the last two helices of the four-helix bundle. The structure suggests that the biologically active form of the molecule may be a dimer formed by contacts involving the C-terminal alpha-helix, which is the most strongly conserved part of the protein. Comparison of the structure of BipD with immunological and other data for IpaD indicates that the C-terminal alpha-helix is also involved in contacts with other proteins that form the translocon.
Assuntos
Burkholderia pseudomallei/química , Burkholderia pseudomallei/fisiologia , Fatores de Virulência/química , Fatores de Virulência/fisiologia , Sequência de Aminoácidos , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/patogenicidade , Cristalografia por Raios X , Dados de Sequência Molecular , Fatores de Virulência/genéticaRESUMO
A number of X-ray analyses of an enzyme involved in a key early stage of tetrapyrrole biosynthesis are reported. Two structures of human 5-aminolaevulinate dehydratase (ALAD), native and recombinant, have been determined at 2.8â Å resolution, showing that the enzyme adopts an octameric quaternary structure in accord with previously published analyses of the enzyme from a range of other species. However, this is in contrast to the finding that a disease-related F12L mutant of the human enzyme uniquely forms hexamers [Breinig et al. (2003), Nature Struct. Biol. 10, 757-763]. Monomers of all ALADs adopt the TIM-barrel fold; the subunit conformation that assembles into the octamer includes the N-terminal tail of one monomer curled around the (α/ß)8 barrel of a neighbouring monomer. Both crystal forms of the human enzyme possess two monomers per asymmetric unit, termed A and B. In the native enzyme there are a number of distinct structural differences between the A and B monomers, with the latter exhibiting greater disorder in a number of loop regions and in the active site. In contrast, the second monomer of the recombinant enzyme appears to be better defined and the active site of both monomers clearly possesses a zinc ion which is bound by three conserved cysteine residues. In native human ALAD, the A monomer also has a ligand resembling the substrate ALA which is covalently bound by a Schiff base to one of the active-site lysines (Lys252) and is held in place by an ordered active-site loop. In contrast, these features of the active-site structure are disordered or absent in the B subunit of the native human enzyme. The octameric structure of the zinc-dependent ALAD from the hyperthermophile Pyrobaculum calidifontis is also reported at a somewhat lower resolution of 3.5â Å. Finally, the details are presented of a high-resolution structure of the Escherichia coli ALAD enzyme co-crystallized with a noncovalently bound moiety of the product, porphobilinogen (PBG). This structure reveals that the pyrrole side-chain amino group is datively bound to the active-site zinc ion and that the PBG carboxylates interact with the enzyme via hydrogen bonds and salt bridges with invariant residues. A number of hydrogen-bond interactions that were previously observed in the structure of yeast ALAD with a cyclic intermediate resembling the product PBG appear to be weaker in the new structure, suggesting that these interactions are only optimal in the transition state.
RESUMO
Burkholderia pseudomallei, the causative agent of melioidosis, possesses a protein-secretion apparatus that is similar to those found in Salmonella and Shigella. A major function of these secretion systems is to secrete virulence-associated proteins into target cells of the host organism. The BipD gene of B. pseudomallei encodes a secreted virulence factor that is similar in sequence and most likely functionally analogous to IpaD from Shigella and SipD from Salmonella. Thus, the BipD protein is likely to be a component of a type III protein-secretion system (TTSS) in B. pseudomallei. Proteins in the same class as BipD, such as IpaD and SipD, are thought to act as extracellular chaperones to help the hydrophobic translocator proteins enter the target cell membrane, where they form a pore and might even link the translocon pore with the secretion needle. There is evidence that the translocator proteins also bind an integrin which stimulates actin-mediated insertion of the bacterium into the host-cell membrane. Native BipD has been crystallized in a monoclinic crystal form that diffracts X-rays to 2.5 angstroms resolution. BipD protein which incorporates selenomethionine (SeMet-BipD) has also been expressed and forms crystals which diffract to a higher resolution of 2.1 angstroms.
Assuntos
Burkholderia pseudomallei/patogenicidade , Fatores de Virulência/química , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Cristalização , Selenometionina/metabolismo , Sensibilidade e Especificidade , Fatores de Virulência/isolamento & purificação , Difração de Raios XRESUMO
Endothiapepsin is derived from the fungus Endothia parasitica and is a member of the aspartic proteinase class of enzymes. This class of enzyme is comprised of two structurally similar lobes, each lobe contributing an aspartic acid residue to form a catalytic dyad that acts to cleave the substrate peptide bond. The three-dimensional structures of endothiapepsin bound to five transition state analogue inhibitors (H189, H256, CP-80,794, PD-129,541 and PD-130,328) have been solved at atomic resolution allowing full anisotropic modelling of each complex. The active sites of the five structures have been studied with a view to studying the catalytic mechanism of the aspartic proteinases by locating the active site protons by carboxyl bond length differences and electron density analysis. In the CP-80,794 structure there is excellent electron density for the hydrogen on the inhibitory statine hydroxyl group which forms a hydrogen bond with the inner oxygen of Asp32. The location of this proton has implications for the catalytic mechanism of the aspartic proteinases as it is consistent with the proposed mechanism in which Asp32 is the negatively charged aspartate. A number of short hydrogen bonds (approximately 2.6 A) with ESD values of around 0.01 A that may have a role in catalysis have been identified within the active site of each structure; the lengths of these bonds have been confirmed using NMR techniques. The possibility and implications of low barrier hydrogen bonds in the active site are considered.
Assuntos
Ácido Aspártico Endopeptidases/química , Inibidores Enzimáticos/química , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Domínio Catalítico , Cristalografia por Raios X , Inibidores Enzimáticos/metabolismo , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Ligação Proteica , Conformação ProteicaRESUMO
Common to the biosynthesis of all known tetrapyrroles is the condensation of two molecules of 5-aminolevulinic acid to the pyrrole porphobilinogen catalyzed by the enzyme porphobilinogen synthase (PBGS). Two major classes of PBGS are known. Zn2+-dependent PBGSs are found in mammals, yeast and some bacteria including Escherichia coli, while Mg2+-dependent PBGSs are present mainly in plants and other bacteria. The crystal structure of the Mg2+-dependent PBGS from the human pathogen Pseudomonas aeruginosa in complex with the competitive inhibitor levulinic acid (LA) solved at 1.67 A resolution shows a homooctameric enzyme that consists of four asymmetric dimers. The monomers in each dimer differ from each other by having a "closed" and an "open" active site pocket. In the closed subunit, the active site is completely shielded from solvent by a well-defined lid that is partially disordered in the open subunit. A single molecule of LA binds to a mainly hydrophobic pocket in each monomer where it is covalently attached via a Schiff base to an active site lysine residue. Whereas no metal ions are found in the active site of both monomers, a single well-defined and highly hydrated Mg2+is present only in the closed form about 14 A away from the Schiff base forming nitrogen atom of the active site lysine. We conclude that the observed differences in the active sites of both monomers might be induced by Mg2+-binding to this remote site and propose a structure-based mechanism for this allosteric Mg2+in rate enhancement.
Assuntos
Magnésio/metabolismo , Sintase do Porfobilinogênio/química , Sintase do Porfobilinogênio/metabolismo , Sítio Alostérico , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Cristalização , Cristalografia por Raios X , Dimerização , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Ácidos Levulínicos/metabolismo , Ácidos Levulínicos/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Sintase do Porfobilinogênio/antagonistas & inibidores , Conformação Proteica , Pseudomonas aeruginosa/enzimologiaRESUMO
The structures of 5-aminolaevulinic acid dehydratase (ALAD) complexed with substrate (5-aminolaevulinic acid) and three inhibitors: laevulinic acid, succinylacetone and 4-keto-5-aminolaevulinic acid, have been solved at high resolution. The ligands all bind by forming a covalent link with Lys263 at the active site. The structures define the interactions made by one of the two substrate moieties that bind to the enzyme during catalysis. All of the inhibitors induce a significant ordering of the flap covering the active site. Succinylacetone appears to be unique by inducing a number of conformational changes in loops covering the active site, which may be important for understanding the co-operative properties of ALAD enzymes. Succinylacetone is produced in large amounts by patients suffering from the hereditary disease type I tyrosinaemia and its potent inhibition of ALAD also has implications for the pathology of this disease. The most intriguing result is that obtained with 4-keto-5-amino-hexanoic acid, which seems to form a stable carbinolamine intermediate with Lys263. It appears that we have defined the structure of an intermediate of Schiff base formation that the substrate forms upon binding to the P-site of the enzyme.
Assuntos
Inibidores Enzimáticos/química , Sintase do Porfobilinogênio/química , Sintase do Porfobilinogênio/metabolismo , Leveduras/enzimologia , Ácido Aminolevulínico/química , Ácido Aminolevulínico/metabolismo , Ligação Competitiva , Domínio Catalítico , Cristalografia por Raios X , Inibidores Enzimáticos/metabolismo , Heptanoatos/química , Heptanoatos/metabolismo , Humanos , Ácidos Levulínicos/química , Ácidos Levulínicos/metabolismo , Lisina/química , Modelos Moleculares , Sintase do Porfobilinogênio/antagonistas & inibidores , Conformação Proteica , Tirosinemias/metabolismoRESUMO
The neuronal protein calexcitin from the long-finned squid Loligo pealei has been expressed in Escherichia coli and purified to homogeneity. Calexcitin is a 22 kDa calcium-binding protein that becomes up-regulated in invertebrates following Pavlovian conditioning and is likely to be involved in signal transduction events associated with learning and memory. Recombinant squid calexcitin has been crystallized using the hanging-drop vapour-diffusion technique in the orthorhombic space group P2(1)2(1)2(1). The unit-cell parameters of a = 46.6, b = 69.2, c = 134.8 A suggest that the crystals contain two monomers per asymmetric unit and have a solvent content of 49%. This crystal form diffracts X-rays to at least 1.8 A resolution and yields data of high quality using synchrotron radiation.
Assuntos
Proteínas de Ligação ao Cálcio/química , Loligo/química , Proteínas do Tecido Nervoso/química , Cálcio/química , Cálcio/metabolismo , Clonagem Molecular , Cristalografia por Raios X , DNA Complementar/metabolismo , Decapodiformes , Difusão , Escherichia coli/metabolismo , Aprendizagem , Memória , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Transdução de Sinais , Regulação para Cima , Difração de Raios XRESUMO
The enzyme 2,4'-dihydroxyacetophenone dioxygenase (DAD) catalyses the conversion of 2,4'-dihydroxyacetophenone to 4-hydroxybenzoic acid and formic acid. This enzyme is a very unusual dioxygenase in that it cleaves a C-C bond in a substituent of the aromatic ring rather than within the ring itself. Whilst it has been shown that DAD is a tetramer in solution, the recently solved crystal structure of the Alcaligenes sp. 4HAP enzyme was in fact dimeric rather than tetrameric. Since the use of limited chymotrypsinolysis, which apparently results in removal of the first 20 or so N-terminal residues of DAD, was necessary for crystallization of the protein, it was investigated whether this was responsible for the change in its oligomerization state. Gel-filtration and analytical ultracentrifugation studies were conducted, which confirmed that chymotrypsinolysed DAD has an apparent molecular weight of around 40â kDa, corresponding to a dimer. In contrast, the native enzyme has a molecular weight in the 70-80â kDa region, as expected for the tetramer. The structural basis for tetramerization has been investigated by the use of several docking servers, and the results are remarkably consistent with the tetrameric structure of a homologous cupin protein from Ralstonia eutropha (PDB entry 3ebr).