Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 309
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circulation ; 149(11): 860-884, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38152989

RESUMO

BACKGROUND: SGLT2 (sodium-glucose cotransporter 2) inhibitors (SGLT2i) can protect the kidneys and heart, but the underlying mechanism remains poorly understood. METHODS: To gain insights on primary effects of SGLT2i that are not confounded by pathophysiologic processes or are secondary to improvement by SGLT2i, we performed an in-depth proteomics, phosphoproteomics, and metabolomics analysis by integrating signatures from multiple metabolic organs and body fluids after 1 week of SGLT2i treatment of nondiabetic as well as diabetic mice with early and uncomplicated hyperglycemia. RESULTS: Kidneys of nondiabetic mice reacted most strongly to SGLT2i in terms of proteomic reconfiguration, including evidence for less early proximal tubule glucotoxicity and a broad downregulation of the apical uptake transport machinery (including sodium, glucose, urate, purine bases, and amino acids), supported by mouse and human SGLT2 interactome studies. SGLT2i affected heart and liver signaling, but more reactive organs included the white adipose tissue, showing more lipolysis, and, particularly, the gut microbiome, with a lower relative abundance of bacteria taxa capable of fermenting phenylalanine and tryptophan to cardiovascular uremic toxins, resulting in lower plasma levels of these compounds (including p-cresol sulfate). SGLT2i was detectable in murine stool samples and its addition to human stool microbiota fermentation recapitulated some murine microbiome findings, suggesting direct inhibition of fermentation of aromatic amino acids and tryptophan. In mice lacking SGLT2 and in patients with decompensated heart failure or diabetes, the SGLT2i likewise reduced circulating p-cresol sulfate, and p-cresol impaired contractility and rhythm in human induced pluripotent stem cell-derived engineered heart tissue. CONCLUSIONS: SGLT2i reduced microbiome formation of uremic toxins such as p-cresol sulfate and thereby their body exposure and need for renal detoxification, which, combined with direct kidney effects of SGLT2i, including less proximal tubule glucotoxicity and a broad downregulation of apical transporters (including sodium, amino acid, and urate uptake), provides a metabolic foundation for kidney and cardiovascular protection.


Assuntos
Cresóis , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Células-Tronco Pluripotentes Induzidas , Inibidores do Transportador 2 de Sódio-Glicose , Ésteres do Ácido Sulfúrico , Humanos , Camundongos , Animais , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Transportador 2 de Glucose-Sódio/metabolismo , Ácido Úrico , Triptofano , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Proteômica , Toxinas Urêmicas , Células-Tronco Pluripotentes Induzidas/metabolismo , Glucose , Sódio/metabolismo , Diabetes Mellitus Tipo 2/complicações
2.
Annu Rev Physiol ; 83: 59-81, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33064963

RESUMO

The regenerative capacity of the heart has long fascinated scientists. In contrast to other organs such as liver, skin, and skeletal muscle, the heart possesses only a minimal regenerative capacity. It lacks a progenitor cell population, and cardiomyocytes exit the cell cycle shortly after birth and do not re-enter after injury. Thus, any loss of cardiomyocytes is essentially irreversible and can lead to or exaggerate heart failure, which represents a major public health problem. New therapeutic options are urgently needed, but regenerative therapies have remained an unfulfilled promise in cardiovascular medicine until today. Yet, through a clearer comprehension of signaling pathways that regulate the cardiomyocyte cell cycle and advances in stem cell technology, strategies have evolved that demonstrate the potential to generate new myocytes and thereby fulfill an essential central criterion for heart repair.


Assuntos
Miócitos Cardíacos/fisiologia , Regeneração/fisiologia , Animais , Diferenciação Celular/fisiologia , Insuficiência Cardíaca/terapia , Humanos , Transdução de Sinais/fisiologia , Células-Tronco/fisiologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-39270001

RESUMO

Human induced pluripotent stem cells (hiPSC) and atrial hiPSC-derived cardiomyocytes (hiPSC-CM) have entered the arena of preclinical AF research. A central question is whether they reproduce the physiological contribution of atrial selective potassium currents (such as the ultrarapid potassium current, IKur) to repolarization. Of note, two studies in single atrial hiPSC-CM reported prolongation of action potential duration by IKur block indicating that IKur might in fact represent a valuable target for the treatment of human AF. However, the results and interpretation are at odds with the literature on IKur block in human atria and the results of clinical studies. We believe that the discrepancies indicate that experiments in single atrial CM (both adult atrial CM and atrial hiPSC-CM) might be misleading. Under particular experimental conditions, atrial hiPSC-CMs may not closely resemble the electrophysiology of the human atrium. Therefore, we recapitulate here methodological issues evaluating potential value of the IKur as an antiarrhythmic target when investigated in animal models, in human atrial tissues and finally in atrial hiPSC-CM.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39270009

RESUMO

Atrial fibrillation (AF) poses a significant therapeutic challenge with drug interventions showing only limited success. Phosphodiesterases (PDE) regulate cardiac electrical stability and may represent an interesting target. Recently, PDE8 inhibition was proposed as an antiarrhythmic intervention by increasing L-type Ca2+ current (ICa,L) and action potential duration (APD). However, the effect size of PDE8 inhibition on ICa,L and APD seems discrepant and effects on force are unknown. We investigated the impact of PDE8 inhibition on force using PF-04957325 in right atrial appendages, obtained from patients in sinus rhythm (SR) and with persistent AF (peAF) undergoing cardiac surgery. A computational model was employed to predict the effects of PDE8 inhibition on APD in SR and peAF. Results showed no increase in force after exposure to increasing concentrations of the PDE8 inhibitor PF-04957325 in either SR or peAF tissues. Furthermore, PDE8 inhibition did not affect the potency or efficacy of norepinephrine-induced inotropic effects in either group. Arrhythmic events triggered by norepinephrine were observed in both SR and peAF, but their frequency remained unaffected by PF-04957325 treatment. Computational modeling predicted that the reported increase in ICa,L induced by PDE8 inhibition would lead to substantial APD prolongation at all repolarization states, particularly in peAF. Our findings indicate that PDE8 inhibition does not significantly impact force or arrhythmogenicity in human atrial tissue.

5.
Europace ; 26(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38788213

RESUMO

AIMS: Human induced pluripotent stem cell-derived atrial cardiomyocytes (hiPSC-aCM) could be a helpful tool to study the physiology and diseases of the human atrium. To fulfil this expectation, the electrophysiology of hiPSC-aCM should closely resemble the situation in the human atrium. Data on the contribution of the slowly activating delayed rectifier currents (IKs) to repolarization are lacking for both human atrium and hiPSC-aCM. METHODS AND RESULTS: Human atrial tissues were obtained from patients with sinus rhythm (SR) or atrial fibrillation (AF). Currents were measured in human atrial cardiomyocytes (aCM) and compared with hiPSC-aCM and used to model IKs contribution to action potential (AP) shape. Action potential was recorded by sharp microelectrodes. HMR-1556 (1 µM) was used to identify IKs and to estimate IKs contribution to repolarization. Less than 50% of hiPSC-aCM and aCM possessed IKs. Frequency of occurrence, current densities, activation/deactivation kinetics, and voltage dependency of IKs did not differ significantly between hiPSC-aCM and aCM, neither in SR nor AF. ß-Adrenoceptor stimulation with isoprenaline did not increase IKs neither in aCM nor in hiPSC-aCM. In tissue from SR, block of IKs with HMR-1556 did not lengthen the action potential duration, even when repolarization reserve was reduced by block of the ultra-rapid repolarizing current with 4-aminopyridine or the rapidly activating delayed rectifier potassium outward current with E-4031. CONCLUSION: I Ks exists in hiPSC-aCM with biophysics not different from aCM. As in adult human atrium (SR and AF), IKs does not appear to relevantly contribute to repolarization in hiPSC-aCM.


Assuntos
Potenciais de Ação , Fibrilação Atrial , Canais de Potássio de Retificação Tardia , Átrios do Coração , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Átrios do Coração/fisiopatologia , Canais de Potássio de Retificação Tardia/metabolismo , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/metabolismo , Feminino , Células Cultivadas , Masculino , Pessoa de Meia-Idade , Cinética , Idoso , Diferenciação Celular , Modelos Cardiovasculares , Bloqueadores dos Canais de Potássio/farmacologia
6.
J Mol Cell Cardiol ; 176: 1-10, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36681268

RESUMO

AIMS: The incidence of atrial fibrillation (AF) increases with age. Women have a lower risk. Little is known on the impact of age, sex and clinical variables on action potentials (AP) recorded in right atrial tissue obtained during open heart surgery from patients in sinus rhythm (SR) and in longstanding AF. We here investigated whether age or sex have an impact on the shape of AP recorded in vitro from right atrial tissue. METHODS: We performed multivariable analysis of individual AP data from trabeculae obtained during heart surgery of patients in SR (n = 320) or in longstanding AF (n = 201). AP were recorded by sharp microelectrodes at 37 °C at 1 Hz. Impact of clinical variables were modeled using a multivariable mixed model regression. RESULTS: In SR, AP duration at 90% repolarization (APD90) increased with age. Lower ejection fraction and higher body mass index were associated with smaller action potential amplitude (APA) and maximum upstroke velocity (Vmax). The use of beta-blockers was associated with larger APD90. In tissues from women, resting membrane potential was less negative and APA as well as Vmax were smaller. Besides shorter APD20 in elderly patients, effects of age and sex on atrial AP were lost in AF. CONCLUSION: The higher probability to develop AF at advanced age cannot be explained by a shortening in APD90. Less negative RMP and lower upstroke velocity might contribute to lower incidence of AF in women, which may be of clinical relevance.


Assuntos
Apêndice Atrial , Fibrilação Atrial , Humanos , Feminino , Idoso , Potenciais de Ação , Potenciais da Membrana , Átrios do Coração
7.
Circulation ; 146(15): 1159-1169, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36073365

RESUMO

BACKGROUND: Transplantation of pluripotent stem cell-derived cardiomyocytes represents a promising therapeutic strategy for cardiac regeneration, and the first clinical studies in patients with heart failure have commenced. Yet, little is known about the mechanism of action underlying graft-induced benefits. Here, we explored whether transplanted cardiomyocytes actively contribute to heart function. METHODS: We injected cardiomyocytes with an optogenetic off-on switch in a guinea pig cardiac injury model. RESULTS: Light-induced inhibition of engrafted cardiomyocyte contractility resulted in a rapid decrease of left ventricular function in ≈50% (7/13) animals that was fully reversible with the offset of photostimulation. CONCLUSIONS: Our optogenetic approach demonstrates that transplanted cardiomyocytes can actively participate in heart function, supporting the hypothesis that the delivery of new force-generating myocardium can serve as a regenerative therapeutic strategy.


Assuntos
Miócitos Cardíacos , Células-Tronco Pluripotentes , Animais , Diferenciação Celular/fisiologia , Cobaias , Miocárdio , Miócitos Cardíacos/transplante , Células-Tronco Pluripotentes/fisiologia , Função Ventricular Esquerda
8.
Pflugers Arch ; 475(12): 1463-1477, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863976

RESUMO

Optogenetic actuators are rapidly advancing tools used to control physiology in excitable cells, such as neurons and cardiomyocytes. In neuroscience, these tools have been used to either excite or inhibit neuronal activity. Cell type-targeted actuators have allowed to study the function of distinct cell populations. Whereas the first described cation channelrhodopsins allowed to excite specific neuronal cell populations, anion channelrhodopsins were used to inhibit neuronal activity. To allow for simultaneous excitation and inhibition, opsin combinations with low spectral overlap were introduced. BiPOLES (Bidirectional Pair of Opsins for Light-induced Excitation and Silencing) is a bidirectional optogenetic tool consisting of the anion channel Guillardia theta anion-conducting channelrhodopsin 2 (GtACR2 with a blue excitation spectrum and the red-shifted cation channel Chrimson. Here, we studied the effects of BiPOLES activation in cardiomyocytes. For this, we knocked in BiPOLES into the adeno-associated virus integration site 1 (AAVS1) locus of human-induced pluripotent stem cells (hiPSC), subjected these to cardiac differentiation, and generated BiPOLES expressing engineered heart tissue (EHT) for physiological characterization. Continuous light application activating either GtACR2 or Chrimson resulted in cardiomyocyte depolarization and thus stopped EHT contractility. In contrast, short light pulses, with red as well as with blue light, triggered action potentials (AP) up to a rate of 240 bpm. In summary, we demonstrate that cation, as well as anion channelrhodopsins, can be used to activate stem cell-derived cardiomyocytes with pulsed photostimulation but also to silence cardiac contractility with prolonged photostimulation.


Assuntos
Miócitos Cardíacos , Optogenética , Humanos , Optogenética/métodos , Channelrhodopsins/genética , Miócitos Cardíacos/metabolismo , Ânions/metabolismo , Cátions
9.
Annu Rev Pharmacol Toxicol ; 60: 529-551, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31506008

RESUMO

In recent decades, drug development costs have increased by approximately a hundredfold, and yet about 1 in 7 licensed drugs are withdrawn from the market, often due to cardiotoxicity. This review considers whether technologies using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) could complement existing assays to improve discovery and safety while reducing socioeconomic costs and assisting with regulatory guidelines on cardiac safety assessments. We draw on lessons from our own work to suggest a panel of 12 drugs that will be useful in testing the suitability of hiPSC-CM platforms to evaluate contractility. We review issues, including maturity versus complexity, consistency, quality, and cost, while considering a potential need to incorporate auxiliary approaches to compensate for limitations in hiPSC-CM technology. We give examples on how coupling hiPSC-CM technologies with Cas9/CRISPR genome engineering is starting to be used to personalize diagnosis, stratify risk, provide mechanistic insights, and identify new pathogenic variants for cardiovascular disease.


Assuntos
Cardiotoxicidade/prevenção & controle , Descoberta de Drogas/métodos , Miócitos Cardíacos/efeitos dos fármacos , Animais , Sistemas CRISPR-Cas/genética , Desenvolvimento de Medicamentos/métodos , Engenharia Genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Medicina de Precisão/métodos
10.
J Transl Med ; 21(1): 566, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620858

RESUMO

BACKGROUND: Long-chain acyl-carnitines (ACs) are potential arrhythmogenic metabolites. Their role in atrial fibrillation (AF) remains incompletely understood. Using a systems medicine approach, we assessed the contribution of C18:1AC to AF by analysing its in vitro effects on cardiac electrophysiology and metabolism, and translated our findings into the human setting. METHODS AND RESULTS: Human iPSC-derived engineered heart tissue was exposed to C18:1AC. A biphasic effect on contractile force was observed: short exposure enhanced contractile force, but elicited spontaneous contractions and impaired Ca2+ handling. Continuous exposure provoked an impairment of contractile force. In human atrial mitochondria from AF individuals, C18:1AC inhibited respiration. In a population-based cohort as well as a cohort of patients, high C18:1AC serum concentrations were associated with the incidence and prevalence of AF. CONCLUSION: Our data provide evidence for an arrhythmogenic potential of the metabolite C18:1AC. The metabolite interferes with mitochondrial metabolism, thereby contributing to contractile dysfunction and shows predictive potential as novel circulating biomarker for risk of AF.


Assuntos
Fibrilação Atrial , Humanos , Átrios do Coração , Mitocôndrias , Contração Muscular , Respiração
11.
J Mol Cell Cardiol ; 163: 106-117, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34687723

RESUMO

Heart regeneration addresses a central problem in cardiology, the irreversibility of the loss of myocardium that eventually leads to heart failure. True restoration of heart function can only be achieved by remuscularization, i.e. replacement of lost myocardium by new, force-developing heart muscle. With the availability of principally unlimited human cardiomyocytes from pluripotent stem cells, one option to remuscularize the injured heart is to produce large numbers of cardiomyocytes plus/minus other cardiovascular cell types or progenitors ex vivo and apply them to the heart, either by injection or application as a patch. Exciting progress over the past decade has led to the first clinical applications, but important questions remain. Academic and increasingly corporate activity is ongoing to answer them and optimize the approach to finally develop a true regenerative therapy of heart failure.


Assuntos
Insuficiência Cardíaca , Células-Tronco Pluripotentes , Diferenciação Celular , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/terapia , Humanos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo
12.
J Mol Cell Cardiol ; 163: 97-105, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34634355

RESUMO

BACKGROUND: One third of heart failure patients exhibit dyssynchronized electromechanical activity of the heart (evidenced by a broad QRS-complex). Cardiac resynchronization therapy (CRT) in the form of biventricular pacing improves cardiac output and clinical outcome of responding patients. Technically demanding and laborious large animal models have been developed to better predict responders of CRT and to investigate molecular mechanisms of dyssynchrony and CRT. The aim of this study was to establish a first humanized in vitro model of dyssynchrony and CRT. METHODS: Cardiomyocytes were differentiated from human induced pluripotent stem cells and cast into a fibrin matrix to produce engineered heart tissue (EHT). EHTs were either field stimulated in their entirety (symmetrically) or excited locally from one end (asymmetrically) or they were allowed to beat spontaneously. RESULTS: Asymmetrical pacing led to a depolarization wave from one end to the other end, which was visualized in human EHT transduced with a fast genetic Ca2+-sensor (GCaMP6f) arguing for dyssynchronous excitation. Symmetrical pacing in contrast led to an instantaneous (synchronized) Ca2+-signal throughout the EHT. To investigate acute and long-term functional effects, spontaneously beating human EHTs (0.5-0.8 Hz) were divided into a non-paced control group, a symmetrically and an asymmetrically paced group, each stimulated at 1 Hz. Symmetrical pacing was clearly superior to asymmetrical pacing or no pacing regarding contractile force both acutely and even more pronounced after weeks of continuous stimulation. Contractile dysfunction that can be evoked by an increased afterload was aggravated in the asymmetrically paced group. Consistent with reports from paced dogs, p38MAPK and CaMKII-abundance was higher under asymmetrical than under symmetrical pacing while pAKT was considerably lower. CONCLUSIONS: This model allows for long-term pacing experiments mimicking electrical dyssynchrony vs. synchrony in vitro. Combined with force measurement and afterload stimulus manipulation, it provides a robust new tool to gain insight into the biology of dyssynchrony and CRT.


Assuntos
Terapia de Ressincronização Cardíaca , Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Animais , Estimulação Cardíaca Artificial , Cães , Humanos , Miócitos Cardíacos , Resultado do Tratamento
13.
J Mol Cell Cardiol ; 166: 1-10, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35081367

RESUMO

Myocardial injury leads to an irreversible loss of cardiomyocytes (CM). The implantation of human engineered heart tissue (EHT) has become a promising regenerative approach. Previous studies exhibited beneficial, dose-dependent effects of human induced pluripotent stem cell (hiPSC)-derived EHT patch transplantation in a guinea pig model in the subacute phase of myocardial injury. Yet, advanced heart failure often results from a chronic remodeling process. Therefore, from a clinical standpoint it is worthwhile to explore the ability to repair the chronically injured heart. In this study human EHT patches were generated from hiPSC-derived CMs (15 × 106 cells) and implanted epicardially four weeks after injury in a guinea pig cryo-injury model. Cardiac function was evaluated by echocardiography after a follow-up period of four weeks. Hearts revealed large transmural myocardial injuries amounting to 27% of the left ventricle. EHT recipient hearts demonstrated compact muscle islands of human origin in the scar region, as indicated by a positive staining for human Ku80 and dystrophin, remuscularizing 5% of the scar area. Echocardiographic analysis demonstrated no significant functional difference between animals that received EHT patches and animals in the cell-free control group (fractional area change 36% vs. 34%). Thus, EHT patches engrafted in the chronically injured heart but in contrast to the subacute model, grafts were smaller and EHT patch transplantation did not improve left ventricular function, highlighting the difficulties for a regenerative approach.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Cicatriz , Cobaias , Ventrículos do Coração , Humanos , Miócitos Cardíacos/transplante , Engenharia Tecidual/métodos
14.
Circulation ; 143(20): 1991-2006, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33648345

RESUMO

BACKGROUND: Human engineered heart tissue (EHT) transplantation represents a potential regenerative strategy for patients with heart failure and has been successful in preclinical models. Clinical application requires upscaling, adaptation to good manufacturing practices, and determination of the effective dose. METHODS: Cardiomyocytes were differentiated from 3 different human induced pluripotent stem cell lines including one reprogrammed under good manufacturing practice conditions. Protocols for human induced pluripotent stem cell expansion, cardiomyocyte differentiation, and EHT generation were adapted to substances available in good manufacturing practice quality. EHT geometry was modified to generate patches suitable for transplantation in a small-animal model and perspectively humans. Repair efficacy was evaluated at 3 doses in a cryo-injury guinea pig model. Human-scale patches were epicardially transplanted onto healthy hearts in pigs to assess technical feasibility. RESULTS: We created mesh-structured tissue patches for transplantation in guinea pigs (1.5×2.5 cm, 9-15×106 cardiomyocytes) and pigs (5×7 cm, 450×106 cardiomyocytes). EHT patches coherently beat in culture and developed high force (mean 4.6 mN). Cardiomyocytes matured, aligned along the force lines, and demonstrated advanced sarcomeric structure and action potential characteristics closely resembling human ventricular tissue. EHT patches containing ≈4.5, 8.5, 12×106, or no cells were transplanted 7 days after cryo-injury (n=18-19 per group). EHT transplantation resulted in a dose-dependent remuscularization (graft size: 0%-12% of the scar). Only high-dose patches improved left ventricular function (+8% absolute, +24% relative increase). The grafts showed time-dependent cardiomyocyte proliferation. Although standard EHT patches did not withstand transplantation in pigs, the human-scale patch enabled successful patch transplantation. CONCLUSIONS: EHT patch transplantation resulted in a partial remuscularization of the injured heart and improved left ventricular function in a dose-dependent manner in a guinea pig injury model. Human-scale patches were successfully transplanted in pigs in a proof-of-principle study.


Assuntos
Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Engenharia Tecidual/métodos , Animais , Modelos Animais de Doenças , Cobaias , Humanos
15.
Am J Physiol Heart Circ Physiol ; 322(3): H373-H385, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35030072

RESUMO

Omecamtiv mecarbil (OM), a myosin activator, was reported to induce complex concentration- and species-dependent effects on contractile function, and clinical studies indicated a low therapeutic index with diastolic dysfunction at concentrations above 1 µM. To further characterize effects of OM in a human context and under different preload conditions, we constructed a setup that allows isometric contractility analysis of human induced pluripotent stem cell (hiPSC)-derived engineered heart tissues (EHTs). The results were compared with effects of OM on the very same EHTs measured under auxotonic conditions. OM induced a sustained, concentration-dependent increase in time to peak under all conditions (maximally two- to threefold). Peak force, in contrast, was increased by OM only in human, but not rat EHTs and only under isometric conditions, varied between hiPSC lines and showed a biphasic concentration dependency with maximal effects at 1 µM. Relaxation time tended to fall under auxotonic and strongly increased under isometric conditions, again with biphasic concentration dependency. Diastolic tension concentration dependently increased under all conditions. The latter was reduced by an inhibitor of the mitochondrial sodium calcium exchanger (CGP-37157). OM induced increases in mitochondrial oxidation in isolated cardiomyocytes, indicating that OM, an inotrope that does not increase intracellular and mitochondrial Ca2+, can induce mismatch between an increase in ATP and ROS production and unstimulated mitochondrial redox capacity. Taken together, we developed a novel setup well suitable for isometric measurements of EHTs. The effects of OM on contractility and diastolic tension are complex with concentration-, time-, species- and loading-dependent differences. Effects on mitochondrial function require further studies.NEW & NOTEWORTHY We developed a novel setup allowing precise control of preload of EHT and characterized effects of the myosin activator OM. OM not only exerted contraction-slowing and positive inotropic effects but also increased diastolic tension. Effect size and direction varied between species, auxotonic and isometric conditions, concentration, and time. We also observed OM-induced increase of mitochondrial ROS, which has not been observed before and may explain part of the effects on contractility.


Assuntos
Cardiotônicos/farmacologia , Técnicas de Reprogramação Celular/métodos , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Ureia/análogos & derivados , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Ureia/farmacologia
16.
J Cardiovasc Pharmacol ; 79(5): 678-686, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35170489

RESUMO

ABSTRACT: In human hearts, muscarinic receptors (M-R) are expressed in ventricular and atrial tissue, but the acetylcholine-activated potassium current (IK,ACh) is expressed mainly in the atrium. M-R activation decreases force and increases electrical stability in human atrium, but the impact of IK,ACh to both effects remains unclear. We used a new selective blocker of IK,ACh to elaborate the contribution of IK,ACh to M-R activation-mediated effects in human atrium. Force and action potentials were measured in rat atria and in human right atrial trabeculae. Cumulative concentration-effect curves for norepinephrine-induced force and arrhythmias were measured in the presence of carbachol (CCh; 1 µM) or CCh together with the IK,ACh -blocker XAF-1407 (1 µM) or in time-matched controls. To investigate the vulnerability to arrhythmias, we performed some experiments also in the presence of cilostamide (0.3 µM) and rolipram (1 µM), inhibiting PDE3 and PDE4. In rat atria and human right atrial trabeculae, CCh shortened the action potential duration persistently. However, the direct negative inotropy of CCh was only transient in human, but stable in rat atria. In rat and human atria, the negative inotropic effect was insensitive to blockage of IK,ACh by XAF-1407. In the presence of cilostamide and rolipram about 40% of trabeculae developed arrhythmias when exposed to norepinephrine. CCh prevented these concentration-dependent norepinephrine-induced arrhythmias, again insensitive to XAF-1407. Maximum catecholamine-induced force was not depressed by CCh. In human atrium, the direct and the indirect negative inotropic effect of CCh are independent of IK,ACh. The same applies to the CCh-mediated suppression of norepinephrine/PDE-inhibition-induced arrhythmias.


Assuntos
Acetilcolina , Átrios do Coração , Acetilcolina/farmacologia , Animais , Arritmias Cardíacas/induzido quimicamente , Humanos , Norepinefrina/farmacologia , Ratos , Receptores Muscarínicos/fisiologia , Rolipram/farmacologia
17.
J Mol Cell Cardiol ; 154: 115-123, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33582159

RESUMO

The role of DNA methylation in cardiomyocyte physiology and cardiac disease remains a matter of controversy. We have recently provided evidence for an important role of DNMT3A in human cardiomyocyte cell homeostasis and metabolism, using engineered heart tissue (EHT) generated from human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes carrying a knockout of the de novo DNA methyltransferase DNMT3A. Unlike isogenic control EHT, knockout EHT displayed morphological abnormalities such as lipid accumulations inside cardiomyocytes associated with impaired mitochondrial metabolism, as well as functional defects and impaired glucose metabolism. Here, we analyzed the role of DNMT3A in the setting of cardiac hypertrophy. We induced hypertrophic signaling by treatment with 50 nM endothelin-1 and 20 µM phenylephrine for one week and assessed EHT contractility, morphology, DNA methylation, and gene expression. While both knockout EHTs and isogenic controls showed the expected activation of the hypertrophic gene program, knockout EHTs were protected from hypertrophy-related functional impairment. Conversely, hypertrophic treatment prevented the metabolic consequences of a loss of DNMT3A, i.e. abolished lipid accumulation in cardiomyocytes likely by partial normalization of mitochondrial metabolism and restored glucose metabolism and metabolism-related gene expression of knockout EHT. Together, these data suggest an important role of DNA methylation not only for cardiomyocyte physiology, but also in the setting of cardiac disease.


Assuntos
Cardiomegalia/etiologia , Cardiomegalia/metabolismo , DNA (Citosina-5-)-Metiltransferases/deficiência , Metabolismo Energético , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Biomarcadores , Cardiomegalia/fisiopatologia , Metilação de DNA , DNA Metiltransferase 3A , Epigênese Genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Contração Miocárdica/genética
18.
J Mol Cell Cardiol ; 157: 77-89, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33957110

RESUMO

Hypertrophic cardiomyopathy (HCM) patients are at increased risk of ventricular arrhythmias and sudden cardiac death, which can occur even in the absence of structural changes of the heart. HCM mouse models suggest mutations in myofilament components to affect Ca2+ homeostasis and thereby favor arrhythmia development. Additionally, some of them show indications of pro-arrhythmic changes in cardiac electrophysiology. In this study, we explored arrhythmia mechanisms in mice carrying a HCM mutation in Mybpc3 (Mybpc3-KI) and tested the translatability of our findings in human engineered heart tissues (EHTs) derived from CRISPR/Cas9-generated homozygous MYBPC3 mutant (MYBPC3hom) in induced pluripotent stem cells (iPSC) and to left ventricular septum samples obtained from HCM patients. We observed higher arrhythmia susceptibility in contractility measurements of field-stimulated intact cardiomyocytes and ventricular muscle strips as well as in electromyogram recordings of Langendorff-perfused hearts from adult Mybpc3-KI mice than in wild-type (WT) controls. The latter only occurred in homozygous (Hom-KI) but not in heterozygous (Het-KI) mouse hearts. Both Het- and Hom-KI are known to display pro-arrhythmic increased Ca2+ myofilament sensitivity as a direct consequence of the mutation. In the electrophysiological characterization of the model, we observed smaller repolarizing K+ currents in single cell patch clamp, longer ventricular action potentials in sharp microelectrode recordings and longer ventricular refractory periods in Langendorff-perfused hearts in Hom-KI, but not Het-KI. Interestingly, reduced K+ channel subunit transcript levels and prolonged action potentials were already detectable in newborn, pre-hypertrophic Hom-KI mice. Human iPSC-derived MYBPC3hom EHTs, which genetically mimicked the Hom-KI mice, did exhibit lower mutant mRNA and protein levels, lower force, beating frequency and relaxation time, but no significant alteration of the force-Ca2+ relation in skinned EHTs. Furthermore, MYBPC3hom EHTs did show higher spontaneous arrhythmic behavior, whereas action potentials measured by sharp microelectrode did not differ to isogenic controls. Action potentials measured in septal myectomy samples did not differ between patients with HCM and patients with aortic stenosis, except for the only sample with a MYBPC3 mutation. The data demonstrate that increased myofilament Ca2+ sensitivity is not sufficient to induce arrhythmias in the Mybpc3-KI mouse model and suggest that reduced K+ currents can be a pro-arrhythmic trigger in Hom-KI mice, probably already in early disease stages. However, neither data from EHTs nor from left ventricular samples indicate relevant reduction of K+ currents in human HCM. Therefore, our study highlights the species difference between mouse and human and emphasizes the importance of research in human samples and human-like models.


Assuntos
Biomarcadores , Cardiomiopatia Hipertrófica/etiologia , Cardiomiopatia Hipertrófica/fisiopatologia , Suscetibilidade a Doenças , Eletrofisiologia , Pesquisa Translacional Biomédica , Potenciais de Ação/efeitos dos fármacos , Animais , Cálcio/metabolismo , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/metabolismo , Proteínas de Transporte/genética , Modelos Animais de Doenças , Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Knockout , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/genética , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Potássio/metabolismo , Canais de Potássio/genética , Canais de Potássio/metabolismo
19.
Circulation ; 142(16): 1562-1578, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32885664

RESUMO

BACKGROUND: DNA methylation acts as a mechanism of gene transcription regulation. It has recently gained attention as a possible therapeutic target in cardiac hypertrophy and heart failure. However, its exact role in cardiomyocytes remains controversial. Thus, we knocked out the main de novo DNA methyltransferase in cardiomyocytes, DNMT3A, in human induced pluripotent stem cells. Functional consequences of DNA methylation-deficiency under control and stress conditions were then assessed in human engineered heart tissue from knockout human induced pluripotent stem cell-derived cardiomyocytes. METHODS: DNMT3A was knocked out in human induced pluripotent stem cells by CRISPR/Cas9gene editing. Fibrin-based engineered heart tissue was generated from knockout and control human induced pluripotent stem cell-derived cardiomyocytes. Development and baseline contractility were analyzed by video-optical recording. Engineered heart tissue was subjected to different stress protocols, including serum starvation, serum variation, and restrictive feeding. Molecular, histological, and ultrastructural analyses were performed afterward. RESULTS: Knockout of DNMT3A in human cardiomyocytes had three main consequences for cardiomyocyte morphology and function: (1) Gene expression changes of contractile proteins such as higher atrial gene expression and lower MYH7/MYH6 ratio correlated with different contraction kinetics in knockout versus wild-type; (2) Aberrant activation of the glucose/lipid metabolism regulator peroxisome proliferator-activated receptor gamma was associated with accumulation of lipid vacuoles within knockout cardiomyocytes; (3) Hypoxia-inducible factor 1α protein instability was associated with impaired glucose metabolism and lower glycolytic enzyme expression, rendering knockout-engineered heart tissue sensitive to metabolic stress such as serum withdrawal and restrictive feeding. CONCLUSION: The results suggest an important role of DNA methylation in the normal homeostasis of cardiomyocytes and during cardiac stress, which could make it an interesting target for cardiac therapy.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , Epigenômica/métodos , Regulação da Expressão Gênica/genética , Miócitos Cardíacos/metabolismo , Engenharia Tecidual/métodos , Cardiomegalia/patologia , DNA Metiltransferase 3A , Humanos
20.
Eur Heart J ; 41(36): 3462-3474, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32657324

RESUMO

AIMS: Pathological cardiac remodelling and subsequent heart failure represents an unmet clinical need. Long non-coding RNAs (lncRNAs) are emerging as crucial molecular orchestrators of disease processes, including that of heart diseases. Here, we report on the powerful therapeutic potential of the conserved lncRNA H19 in the treatment of pathological cardiac hypertrophy. METHOD AND RESULTS: Pressure overload-induced left ventricular cardiac remodelling revealed an up-regulation of H19 in the early phase but strong sustained repression upon reaching the decompensated phase of heart failure. The translational potential of H19 is highlighted by its repression in a large animal (pig) model of left ventricular hypertrophy, in diseased human heart samples, in human stem cell-derived cardiomyocytes and in human engineered heart tissue in response to afterload enhancement. Pressure overload-induced cardiac hypertrophy in H19 knock-out mice was aggravated compared to wild-type mice. In contrast, vector-based, cardiomyocyte-directed gene therapy using murine and human H19 strongly attenuated heart failure even when cardiac hypertrophy was already established. Mechanistically, using microarray, gene set enrichment analyses and Chromatin ImmunoPrecipitation DNA-Sequencing, we identified a link between H19 and pro-hypertrophic nuclear factor of activated T cells (NFAT) signalling. H19 physically interacts with the polycomb repressive complex 2 to suppress H3K27 tri-methylation of the anti-hypertrophic Tescalcin locus which in turn leads to reduced NFAT expression and activity. CONCLUSION: H19 is highly conserved and down-regulated in failing hearts from mice, pigs and humans. H19 gene therapy prevents and reverses experimental pressure-overload-induced heart failure. H19 acts as an anti-hypertrophic lncRNA and represents a promising therapeutic target to combat pathological cardiac remodelling.


Assuntos
Cardiopatias , Insuficiência Cardíaca , RNA Longo não Codificante , Animais , Cardiomegalia/genética , Modelos Animais de Doenças , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Humanos , Hipertrofia Ventricular Esquerda , Camundongos , Camundongos Knockout , Miócitos Cardíacos , RNA Longo não Codificante/genética , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA