Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(8): 5118-5127, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38363821

RESUMO

Using functional proteins for therapeutic purposes due to their high selectivity and/or catalytic properties can enable the control of various cellular processes; however, the transport of active proteins inside living cells remains a major challenge. In contrast, intracellular delivery of nucleic acids has become a routine method for a number of applications in gene therapy, genome editing, or immunization. Here we report a functionalizable platform constituting of DNA-protein nanogel carriers cross-linked through streptavidin-biotin or streptactin-biotin interactions and demonstrate its applicability for intracellular delivery of active proteins. We show that the nanogels can be loaded with proteins bearing either biotin, streptavidin, or strep-tag, and the resulting functionalized nanogels can be delivered into living cells after complexation with cationic lipid vectors. We use this approach for delivery of alkaline phosphatase enzyme, which is shown to keep its catalytic activity after internalization by mouse melanoma B16 cells, as demonstrated by the DDAO-phosphate assay. The resulting functionalized nanogels have dimensions on the order of 100 nm, contain around 100 enzyme molecules, and are shown to be transfectable at low lipid concentrations (charge ratio R± = 0.75). This ensures the low toxicity of our system, which in combination with high local enzyme concentration (∼100 µM) underlines potential interest of this nanoplatform for biomedical applications.


Assuntos
Biotina , Polietilenoglicóis , Animais , Camundongos , Nanogéis , Estreptavidina , Proteínas , DNA/metabolismo , Lipídeos , Portadores de Fármacos
2.
Angiogenesis ; 23(2): 249-264, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31900750

RESUMO

INTRODUCTION: Although thioredoxin-interacting protein (TXNIP) is involved in a variety of biological functions, the contribution of endothelial TXNIP has not been well-defined in regards to endothelial and vascular function or in post-ischemic revascularisation. We postulated that inhibition of endothelial TXNIP with siRNA or in a Cre-LoxP system could be involved in protection from high fat, high protein, low carbohydrate (HFHPLC) diet-induced oxidative stress and endothelial dysfunction, leading to vascular damage and impaired revascularisation in vivo. METHODS AND RESULTS: To investigate the role of endothelial TXNIP, the TXNIP gene was deleted in endothelial cells using anti-TXNIP siRNA treatment or the Cre-LoxP system. Murine models were fed a HFHPLC diet, known to induce metabolic disorders. Endothelial TXNIP targeting resulted in protection against metabolic disorder-related endothelial oxidative stress and endothelial dysfunction. This protective effect mitigates media cell loss induced by metabolic disorders and hampered metabolic disorder-related vascular dysfunction assessed by aortic reactivity and distensibility. In aortic ring cultures, metabolic disorders impaired vessel sprouting and this alteration was alleviated by deletion of endothelial TXNIP. When subjected to ischemia, mice fed a HFHPLC diet exhibited defective post-ischemic angiogenesis and impaired blood flow recovery in hind limb ischemia. However, reducing endothelial TXNIP rescued metabolic disorder-related impairment of ischemia-induced revascularisation. CONCLUSION: Collectively, these results show that targeting endothelial TXNIP in metabolic disorders is essential to maintaining endothelial function, vascular function and improving ischemia-induced revascularisation, making TXNIP a potential therapeutic target for therapy of vascular complications related to metabolic disorders.


Assuntos
Proteínas de Transporte/genética , Células Endoteliais/fisiologia , Isquemia , Doenças Metabólicas/fisiopatologia , Neovascularização Fisiológica/genética , Tiorredoxinas/genética , Animais , Células Cultivadas , Citoproteção/genética , Membro Posterior/irrigação sanguínea , Isquemia/genética , Isquemia/metabolismo , Isquemia/fisiopatologia , Isquemia/prevenção & controle , Masculino , Doenças Metabólicas/complicações , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/fisiologia
3.
Mol Pharm ; 17(4): 1159-1169, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32125867

RESUMO

Currently, most nonviral nucleic acid vectors are in the form of colloidal suspensions administered primarily parenterally. This type of formulation and the mode of administration impose strong constraints such as the size of the administered vectors or the production of sterile preparations. The tablet form provides access to easy oral administration, well accepted by patients; As regards nucleic acid vectors, a dry form represents an advance in terms of stability. Using an optimized lipid-based small interfering RNA-delivery system, we studied the tabletability of a liquid suspension of these vectors. We optimized the conditions of freeze-drying by choosing excipients and process, allowing for the conservation of both the gene-silencing efficacy of the formulated siRNAs and the supramolecular structure of the lipid particulate system. Gene-silencing efficacy was assayed on luciferase-expressing cells and the structure of the siRNA vector in freeze-dried and tablet forms was examined using small-angle X-ray scattering (SAXS) synchrotron radiation. The freeze-dried powders were then mixed with excipients necessary for the good progress of the compression by allowing for a regular supply of the matrix and the reduction of friction. The compression was carried out using a rotary press simulator that allows for complete monitoring of the compression conditions. After compression, formulated siRNAs retained more than 60% of their gene-silencing efficacy. Within the tablets, a specific SAXS signal was detectable and the lamellar and cubic phases of the initial liquid suspension were restored after resuspension of siRNA vectors by disintegration of the tablets. These results show that the bilayer lipid structures of the particles were preserved despite the mechanical constraints imposed by the compression. If such a result could be expected after the freeze-drying step, it was never shown, to our knowledge, that siRNA-delivery systems could retain their efficacy and structure after mechanical stress such as compression. This opens promising perspectives to oral administration of siRNA as an alternative to parenteral administration.


Assuntos
Lipídeos/química , RNA Interferente Pequeno/química , Comprimidos/química , Administração Oral , Animais , Linhagem Celular , Excipientes/química , Liofilização/métodos , Inativação Gênica/efeitos dos fármacos , Camundongos , Ácidos Nucleicos/química , Tamanho da Partícula , Pós/química , Espalhamento a Baixo Ângulo , Difração de Raios X/métodos
4.
FASEB J ; 32(6): 3108-3118, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29401599

RESUMO

Although thioredoxin-interacting protein (TXNIP) is involved in a variety of biologic functions, the contribution of endothelial TXNIP has not been well defined. To investigate the endothelial function of TXNIP, we generated a TXNIP knockout mouse on the Cdh5-cre background (TXNIPfl/fl cdh5cre). Control (TXNIPfl/fl) and TXNIPfl/fl cdh5cre mice were fed a high protein-low carbohydrate (HP-LC) diet for 3 mo to induce metabolic stress. We found that TXNIPfl/fl and TXNIPfl/fl cdh5cre mice on an HP-LC diet displayed impaired glucose tolerance and dyslipidemia concretizing the metabolic stress induced. We evaluated the impact of this metabolic stress on mice with reduced endothelial TXNIP expression with regard to arterial structure and function. TXNIPfl/fl cdh5cre mice on an HP-LC diet exhibited less endothelial dysfunction than littermate mice on an HP-LC diet. These mice were protected from decreased aortic medial cell content, impaired aortic distensibility, and increased plasminogen activator inhibitor 1 secretion. This protective effect came with lower oxidative stress and lower inflammation, with a reduced NLRP3 inflammasome expression, leading to a decrease in cleaved IL-1ß. We also show the major role of TXNIP in inflammation with a knockdown model, using a TXNIP-specific, small interfering RNA included in a lipoplex. These findings demonstrate a key role for endothelial TXNIP in arterial impairments induced by metabolic stress, making endothelial TXNIP a potential therapeutic target.-Bedarida, T., Domingues, A., Baron, S., Ferreira, C., Vibert, F., Cottart, C.-H., Paul, J.-L., Escriou, V., Bigey, P., Gaussem, P., Leguillier, T., Nivet-Antoine, V. Reduced endothelial thioredoxin-interacting protein protects arteries from damage induced by metabolic stress in vivo.


Assuntos
Aorta/metabolismo , Proteínas de Transporte/metabolismo , Dislipidemias/metabolismo , Intolerância à Glucose/metabolismo , Estresse Fisiológico , Tiorredoxinas/metabolismo , Animais , Aorta/patologia , Proteínas de Transporte/genética , Dieta com Restrição de Carboidratos/efeitos adversos , Proteínas Alimentares/efeitos adversos , Proteínas Alimentares/farmacologia , Dislipidemias/induzido quimicamente , Dislipidemias/genética , Dislipidemias/patologia , Intolerância à Glucose/induzido quimicamente , Intolerância à Glucose/genética , Intolerância à Glucose/patologia , Inflamassomos/genética , Inflamassomos/metabolismo , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/biossíntese , Serpina E2/biossíntese , Tiorredoxinas/genética
5.
Molecules ; 23(5)2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29734663

RESUMO

Nanomedicine as a therapeutic approach for pregnancy-related diseases could offer improved treatments for the mother while avoiding side effects for the fetus. In this study, we evaluated the potential of liposomes as carriers for small interfering RNAs to placental cells. Three neutral formulations carrying rhodamine-labelled siRNAs were evaluated on an in vitro model, i.e., human primary villous cytotrophoblasts. siRNA internalization rate from lipoplexes were compared to the one in the presence of the lipofectamine reagent and assessed by confocal microscopy. Results showed cellular internalization of nucleic acid with all three formulations, based on two cationic lipids, either DMAPAP or CSL-3. Moreover, incubation with DMAPAP+AA provided a rate of labelled cells as high as with lipofectamine (53 ± 15% and 44 ± 12%, respectively) while being more biocompatible. The proportion of cells which internalized siRNA were similar when using DMAPAP/DDSTU (16 ± 5%) and CSL-3 (22 ± 5%). This work highlights that liposomes could be a promising approach for gene therapy dedicated to pregnant patients.


Assuntos
Técnicas de Transferência de Genes , Lipossomos/uso terapêutico , Complicações na Gravidez/terapia , Feminino , Vetores Genéticos/uso terapêutico , Humanos , Nanomedicina/métodos , Gravidez , Complicações na Gravidez/genética , RNA Interferente Pequeno/uso terapêutico , Trofoblastos/metabolismo , Trofoblastos/patologia
6.
J Neurosci ; 34(39): 13208-21, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25253865

RESUMO

In higher vertebrates, the primordium of the nervous system, the neural tube, is shaped along the rostrocaudal axis through two consecutive, radically different processes referred to as primary and secondary neurulation. Failures in neurulation lead to severe anomalies of the nervous system, called neural tube defects (NTDs), which are among the most common congenital malformations in humans. Mechanisms causing NTDs in humans remain ill-defined. Of particular interest, the thoracolumbar region, which encompasses many NTD cases in the spine, corresponds to the junction between primary and secondary neurulations. Elucidating which developmental processes operate during neurulation in this region is therefore pivotal to unraveling the etiology of NTDs. Here, using the chick embryo as a model, we show that, at the junction, the neural tube is elaborated by a unique developmental program involving concerted movements of elevation and folding combined with local cell ingression and accretion. This process ensures the topological continuity between the primary and secondary neural tubes while supplying all neural progenitors of both the junctional and secondary neural tubes. Because it is distinct from the other neurulation events, we term this phenomenon junctional neurulation. Moreover, the planar-cell-polarity member, Prickle-1, is recruited specifically during junctional neurulation and its misexpression within a limited time period suffices to cause anomalies that phenocopy lower spine NTDs in human. Our study thus provides a molecular and cellular basis for understanding the causality of NTD prevalence in humans and ascribes to Prickle-1 a critical role in lower spinal cord formation.


Assuntos
Defeitos do Tubo Neural/metabolismo , Neurulação , Medula Espinal/embriologia , Animais , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Placa Neural/embriologia , Placa Neural/metabolismo , Células-Tronco Neurais/metabolismo , Tubo Neural/embriologia , Tubo Neural/metabolismo , Defeitos do Tubo Neural/embriologia , Defeitos do Tubo Neural/genética , Medula Espinal/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
7.
Proc Natl Acad Sci U S A ; 109(8): 3047-52, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22315403

RESUMO

ß-Arrestins (Arrb) participate in the regulation of multiple signaling pathways, including Wnt/ß-catenin, the major actor in human colorectal cancer initiation. To better understand the roles of Arrb in intestinal tumorigenesis, a reverse genetic approach (Arrb(-/-)) and in vivo siRNA treatment were used in Apc(Δ14/+) mice. Mice with Arrb2 depletion (knockout and siRNA) developed only 33% of the tumors detected in their Arrb2-WT littermates, whereas Arrb1 depletion remained without significant effect. These remaining tumors grow normally and are essentially Arrb2-independent. Unsupervised hierarchical clustering analysis showed that they clustered with 25% of Apc(Δ14/+);Arrb2(+/+) tumors. Genes overexpressed in this subset reflect a high interaction with the immune system, whereas those overexpressed in Arrb2-dependent tumors are predominantly involved in Wnt signaling, cell adhesion, migration, and extracellular matrix remodeling. The involvement of Arrb2 in intestinal tumor development via the regulation of the Wnt pathway is supported by ex vivo and in vitro experiments using either tumors from Apc(Δ14/+) mice or murine Apc(Min/+) cells. Indeed, Arrb2 siRNAs decreased the expression of Wnt target genes in cells isolated from 12 of 18 tumors from Apc(Δ14/+) mice. In Apc(Min/+) cells, Arrb2 siRNAs completely reversed the increased Wnt activity and colony formation in soft agar induced by Apc siRNA treatment, whereas they did not affect these parameters in basal conditions or in cells expressing constitutively active ß-catenin. We demonstrate that Arrb2 is essential for the initiation and growth of intestinal tumors displaying elevated Wnt pathway activity and identify a previously unsuspected molecular heterogeneity among tumors induced by truncating Apc mutations.


Assuntos
Arrestinas/metabolismo , Neoplasias Intestinais/metabolismo , Neoplasias Intestinais/patologia , Via de Sinalização Wnt , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proliferação de Células , Separação Celular , Transformação Celular Neoplásica/patologia , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Intestinais/genética , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição 4 , Ensaio Tumoral de Célula-Tronco , beta-Arrestina 1 , beta-Arrestina 2 , beta-Arrestinas
8.
Arthritis Rheum ; 65(5): 1203-12, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23335223

RESUMO

OBJECTIVE: Glucocorticoid-induced leucine zipper (GILZ) has effects on inflammatory pathways that suggest it to be a key inhibitory regulator of the immune system, and its expression is exquisitely sensitive to induction by glucocorticoids. We undertook this study to test our hypothesis that GILZ deficiency would exacerbate experimental immune-mediated inflammation and impair the effects of glucocorticoids on inflammation and, correspondingly, that exogenous GILZ would inhibit these events. METHODS: GILZ(-/-) mice were generated using the Cre/loxP system, and responses were studied in delayed-type hypersensitivity (DTH), antigen-induced arthritis (AIA), K/BxN serum-transfer arthritis, and lipopolysaccharide (LPS)-induced cytokinemia. Therapeutic expression of GILZ via administration of recombinant adeno-associated virus expressing the GILZ gene (GILZ-rAAV) was compared to the effects of glucocorticoid in collagen-induced arthritis (CIA). RESULTS: Increased T cell proliferation and DTH were observed in GILZ(-/-) mice, but neither AIA nor K/BxN serum-transfer arthritis was affected, and GILZ deficiency did not affect LPS-induced cytokinemia. Deletion of GILZ did not impair the effects of exogenous glucocorticoids on CIA or cytokinemia. In contrast, overexpression of GILZ in joints significantly inhibited CIA, with an effect similar to that of dexamethasone. CONCLUSION: Despite effects on T cell activation, GILZ deficiency had no effect on effector pathways of arthritis and was unexpectedly redundant with effects of glucocorticoids. These findings do not support the hypothesis that GILZ is central to the actions of glucocorticoids, but the efficacy of exogenous GILZ in CIA suggests that further evaluation of GILZ in inflammatory disease is required.


Assuntos
Artrite Experimental/terapia , Hipersensibilidade Tardia/terapia , Fatores de Transcrição/genética , Adenoviridae/genética , Animais , Artrite Experimental/genética , Proliferação de Células , Dexametasona/farmacologia , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Marcação de Genes , Terapia Genética/métodos , Glucocorticoides/farmacologia , Hipersensibilidade Tardia/genética , Lipopolissacarídeos/farmacologia , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T/imunologia , Fatores de Transcrição/deficiência , Transdução Genética
9.
Nanomedicine ; 10(4): 775-82, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24361386

RESUMO

We provide evidence that cationic lipids, usually considered as a safe alternative to viral vectors as nanocarriers for gene therapy or drug intracellular delivery, do not behave as inert material but do activate cellular signalling pathways implicated in inflammatory reactions. We show here that the cationic lipid RPR206252 induces NF-κB activation, and the production of TNF-α, IL-1ß, IL-6 and IFN-γ by human or mouse macrophage cell lines. Further, we demonstrate that the activation of inflammatory cascades by RPR206252 is dependent on Toll-like receptor 2 (TLR2), the natural sensor of bacterial lipopeptides and NOD-like receptor protein 3 (NLRP3), the major inflammasome component. Our results suggest that cationic lipid nanocarriers because of their ability to stimulate the innate system can be used as a new class of synthetic and safe adjuvant for vaccination. FROM THE CLINICAL EDITOR: Cationic lipid nanocarriers are typically considered neutral tools for gene delivery. However, as demonstrated in this study, they possess a clear ability to stimulate the innate immune system, and actually can be used as a new class of synthetic and safe adjuvant for vaccination.


Assuntos
Proteínas de Transporte/imunologia , Portadores de Fármacos/farmacologia , Lipídeos/farmacologia , Nanopartículas , Receptor 2 Toll-Like/imunologia , Animais , Citocinas/imunologia , Portadores de Fármacos/química , Células HEK293 , Humanos , Imunidade Inata/efeitos dos fármacos , Lipídeos/química , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR
10.
Ann Rheum Dis ; 72(10): 1717-24, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23313810

RESUMO

OBJECTIVES: Nicotinamide phosphoribosyltransferase (NAMPT)/pre-B-cell colony-enhancing factor/visfatin exerts multiple functions and has been implicated in the pathogenesis of rheumatoid arthritis. To gain insight into its role in arthritis and given that NAMPT is identified as a novel mediator of innate immunity, we addressed the function of monocyte-derived NAMPT in experimental arthritis by selective gene knockdown in inflammatory monocytes. METHODS: siRNA uptake and NAMPT expression were determined in Ly6Chigh and Ly6Clow monocyte subsets following intravenous injection of siRNA against NAMPT (siNAMPT) or non-targeting siRNA (siCT) formulated with the DMAPAP cationic liposome into mice. Mice with established collagen-induced arthritis (CIA) were treated weekly after disease onset with siNAMPT or siCT and clinical features were assessed. T-helper cell frequencies, cytokine production and percentage of IL-6-producing Ly6Chigh monocytes were analysed. Using a co-culture system consisting of purified CD14 monocytes and autologous CD4 T cells, NAMPT and cytokine production, and the percentage of IL-17-producing CD4 T cells, were determined following transfection of CD14 monocytes with siCT or siNAMPT. RESULTS: On intravenous injection, siRNA was preferentially engulfed by Ly6Chigh monocytes, and siRNA-mediated silencing of NAMPT expression in Ly6Chigh monocytes inhibited CIA progression. This effect was associated with reduced IL-6 production by Ly6Chigh monocytes, reduced proportion of Th17 cells and autoantibody titers, and decreased activation and infiltration of monocytes/macrophages and neutrophils in arthritic joints. Moreover, NAMPT-RNAi-silenced CD14 monocytes were found to reduce the percentage of IL-17-producing CD4 T cells in vitro. CONCLUSIONS: Our results show that the expression of NAMPT in Ly6Chigh monocytes promotes many downstream effects involved in inflammatory arthritis and demonstrate the utility of targeting disease-causing genes, such as NAMPT, in Ly6Chigh monocytes for therapeutic intervention in arthritis.


Assuntos
Artrite Experimental/imunologia , Citocinas/imunologia , Monócitos/imunologia , Nicotinamida Fosforribosiltransferase/imunologia , Animais , Artrite Experimental/prevenção & controle , Linfócitos T CD4-Positivos/imunologia , Técnicas de Cocultura , Citocinas/biossíntese , Citocinas/genética , Inativação Gênica , Humanos , Imunomodulação/imunologia , Interleucina-6/biossíntese , Receptores de Lipopolissacarídeos/análise , Camundongos , Camundongos Endogâmicos DBA , Nicotinamida Fosforribosiltransferase/genética , RNA Interferente Pequeno/genética , Células Th17/imunologia
11.
Pain ; 164(6): 1355-1374, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36378744

RESUMO

ABSTRACT: Chronic pain involves sensitization of nociceptors and synaptic transmission of painful signals in nociceptive circuits in the dorsal horn of the spinal cord. We investigated the contribution of clathrin-dependent endocytosis to sensitization of nociceptors by G protein-coupled receptors (GPCRs) and to synaptic transmission in spinal nociceptive circuits. We determined whether therapeutic targeting of endocytosis could ameliorate pain. mRNA encoding dynamin (Dnm) 1 to 3 and adaptor-associated protein kinase 1 (AAK1), which mediate clathrin-dependent endocytosis, were localized to primary sensory neurons of dorsal root ganglia of mouse and human and to spinal neurons in the dorsal horn of the mouse spinal cord by RNAScope. When injected intrathecally to mice, Dnm and AAK1 siRNA or shRNA knocked down Dnm and AAK1 mRNA in dorsal root ganglia neurons, reversed mechanical and thermal allodynia and hyperalgesia, and normalized nonevoked behavior in preclinical models of inflammatory and neuropathic pain. Intrathecally administered inhibitors of clathrin, Dnm, and AAK1 also reversed allodynia and hyperalgesia. Disruption of clathrin, Dnm, and AAK1 did not affect normal motor functions of behaviors. Patch clamp recordings of dorsal horn neurons revealed that Dnm1 and AAK1 disruption inhibited synaptic transmission between primary sensory neurons and neurons in lamina I/II of the spinal cord dorsal horn by suppressing release of synaptic vesicles from presynaptic primary afferent neurons. Patch clamp recordings from dorsal root ganglion nociceptors indicated that Dnm siRNA prevented sustained GPCR-mediated sensitization of nociceptors. By disrupting synaptic transmission in the spinal cord and blunting sensitization of nociceptors, endocytosis inhibitors offer a therapeutic approach for pain treatment.


Assuntos
Neuralgia , Nociceptores , Ratos , Animais , Humanos , Nociceptores/fisiologia , Hiperalgesia/metabolismo , Nociceptividade/fisiologia , Ratos Sprague-Dawley , Transmissão Sináptica , Neuralgia/metabolismo , Células do Corno Posterior/metabolismo , Corno Dorsal da Medula Espinal , Gânglios Espinais/fisiologia
12.
Blood ; 116(18): 3505-16, 2010 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-20682854

RESUMO

Cells from the mononuclear phagocyte system (MPS) act as systemic and local amplifiers that contribute to the progression of chronic inflammatory disorders. Transforming growth factor-ß-activated kinase 1 (TAK1) is a pivotal upstream mitogen-activated protein kinase-kinase-kinase acting as a mediator of cytokine expression. It remains critical to determine in vivo the implication of TAK1 in controlling the innate immune system. Here, we describe a vehicle tailored to selectively deliver siRNAs into MPS cells after intravenous administration, and validate in vivo the potential of the RNAi-mediated TAK1 knock down for immunomodulation. In a mouse model of immune-mediated inflammatory disorder, we show that anti-TAK1 siRNA lipoplexes efficiently alleviate inflammation, severely impair the downstream c-Jun N-terminal kinase and nuclear factor-κB signaling pathways, and decrease the expression of proinflammatory mediators. Importantly, the systemic TAK1 gene silencing decreases the frequency of Th1 and Th17 cells, both mediating autoimmunity in experimental arthritis, demonstrating the immunomodulatory potential of TAK1. Finally, in vitro inhibition of TAK1 in myeloid cells decreases interferon-γ-producing T cells, suggesting that a delivery system able to target MPS cells and to silence TAK1 impacts on pathogenic T effector cells in autoimmunity.


Assuntos
MAP Quinase Quinase Quinases/genética , Células Mieloides/imunologia , Interferência de RNA , Células Th1/imunologia , Células Th17/imunologia , Animais , Artrite/terapia , Linhagem Celular , Inflamação/terapia , Proteínas Quinases JNK Ativadas por Mitógeno/imunologia , Lipopolissacarídeos/imunologia , MAP Quinase Quinase Quinases/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Quinases Ativadas por Mitógeno/imunologia , Monócitos/imunologia , NF-kappa B/imunologia , Fator de Necrose Tumoral alfa/imunologia
13.
Explor Target Antitumor Ther ; 3(6): 398-413, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046055

RESUMO

Aim: Gene-based immunotherapy against cancer is limited by low gene transfer efficiency. In the literature, interleukin-12 (IL-12) encoding plasmid associated with sonoporation has been shown to enhance antitumoral activity. Moreover, non-viral carriers and high-frequency ultrasound have both been shown to promote immune response activation. Here, IL-12 encoding plasmid, non-viral carrier stimulating the immune response and focused ultrasound were combined in order to improve the antitumoral efficiency. Methods: In order to enhance a gene-based antitumoral immune response, home-made lipids Toll-like receptor 2 (TLR2) agonists and plasmid free of antibiotic resistance version 4 (pFAR4), a mini-plasmid, encoding the IL-12 cytokine were combined with high-intensity focused ultrasound (HIFU). The lipid composition and the combination conditions were selected following in vitro and in vivo preliminary studies. The expression of IL-12 from our plasmid construct was measured in vitro and in vivo. The combination strategy was evaluated in mice bearing colon carcinoma cells (CT26) tumors following their weight, tumor volume, interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α) levels in the serum and produced by splenocytes exposed to CT26 tumor cells. Results: Lipid-mediated cell transfection and intratumoral injection into CT26 tumor mice using pFAR4-IL-12 led to the secretion of the IL-12 cytokine into cell supernatant and mice sera, respectively. Conditions of thermal deposition using HIFU were optimized. The plasmid encoding pFAR4-IL-12 or TLR2 agonist alone had no impact on tumor growth compared with control mice, whereas the complete treatment consisting of pFAR4-IL-12, TLR2 lipid agonist, and HIFU limited tumor growth. Moreover, only the complete treatment increased significantly mice survival and provided an abscopal effect on a metastatic CT26 model. Conclusions: The HIFU condition was highly efficient to stop tumor growth. The combined therapy was the most efficient in terms of IL-12 and IFN-γ production and mice survival. The study showed the feasibility and the limits of this combined therapy which has the potential to be improved.

14.
Int J Pharm X ; 4: 100138, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36405872

RESUMO

We report the formulation, characterization, colloidal stability, and in vitro efficiency of Fisetin nanocrystals stabilized by poloxamer P407. Such nanocrystals present a nanometer scale (148.6 ± 1.1 nm) and a high homogeneity (polydispersity index of 0.17 ± 0.01), with a production yield of 97.0 ± 2.5%. The engineered formulations of nanocrystals suspension (pH of 7.4 ± 0.1), stabilized via steric repulsion, are stable for several days in aqueous environment (Milli Q water, NaCl 10 mM or mannitol 5% w/v), for few days in HEPES buffered saline (HBS) (20 / 150 mM) under sink conditions, and in culture medium. After freeze drying in 5% w/v mannitol, the nanocrystal formulations can be stored at -80 °C for at least 120 days. Drug release experiments displayed a 98.7 ± 5.1% cumulative release over 3 days in HBS. Compared to the free drug, the nanocrystal formulations showed an improved cytotoxicity highlighted by the decrease of the half maximal inhibitory concentration for both murine Lewis lung carcinoma (3LL) and human endothelial (EA.hy926) cell lines. In addition, after incubation with Fisetin nanosuspensions, significant changes in the cell morphology for both cell lines were observed, showing an improved anti-angiogenic effect of nanocrystals formulation compared to the free drug. Overall, Fisetin formulated as nanocrystals showed enhanced biopharmaceutical properties and in vitro activity, offering a wide range of indications for challenging applications in the clinic.

15.
J Control Release ; 350: 228-243, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35995297

RESUMO

Vectorized small interfering RNAs (siRNAs) are widely used to induce gene silencing. Among the delivery systems used, lipid-based particles are the most effective. Our objective was the development of novel lipid-polymer hybrid nanoparticles, from lipoplexes (complexes of cationic lipid and siRNAs), and poly (lactic-co-glycolic acid) (PLGA), using a simple modified nanoprecipitation method. Due to their morphology, we called these hybrid nanoparticles Spheroplexes. We elucidated their structure using several physico-chemical techniques and showed that they are composed of a hydrophobic PLGA matrix, surrounded by a lipid envelope adopting a lamellar structure, in which the siRNA is complexed, and they retain surface characteristics identical to the starting nanoparticles, i.e. lipoplexes siRNA. We analyzed the composition of the particle population and determined the final percentage of spheroplexes within this population, 80 to 85% depending on the preparation conditions, using fluorescent markers and the ability of flow cytometry to detect nanometric particles (approximately 200 nm). Finally, we showed that spheroplexes are very stable particles and more efficient than siRNA lipoplexes for the delivery of siRNA to cultured cells. We administered spheroplexes contain siRNAs targeting TNF-α to mice with ulcerative colitis induced by dextran sulfate and our results indicate a disease regression effect with a response probably mediated by their uptake by macrophages / monocytes at the level of lamina propria of the colon. The efficacy of decreased level of TNF-α in vivo seemed to be an association of spheroplexes polymer-lipid composition and the specific siRNA. These results demonstrate that spheroplexes are a promising hybrid nanoparticle for the oral delivery of siRNA to the colon.


Assuntos
Nanopartículas , Fator de Necrose Tumoral alfa , Animais , Cátions/química , Sulfato de Dextrana , Lipídeos/química , Lipossomos , Camundongos , Nanopartículas/química , Polímeros/química , RNA Interferente Pequeno
16.
Cell Biol Toxicol ; 27(5): 363-70, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21706388

RESUMO

Energetic failure which occurs in both ischemia/reperfusion and acute drug-induced hepatotoxicity is frequently associated with oxidative stress. This study displays the setting of a new cell culture model for hepatic energetic failure, i.e., HepG2 models modified by etomoxir [ETO] addition [0.1 mM to 1 mM] and compares the cell impact versus tert-butylhydroperoxide [TBOOH; 0.2 mM], an oxidative stress inducer. As it was observed with Minimum Essential Medium (MEM) without any interfering agent, decreasing temperature drastically lowered adenosine triphosphate (ATP) levels, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) viability test, and protein content, compared to 37 °C (p=0.02, p<0.001 and p<0.001, respectively), but to a larger extent in the presence of ETO or TBOOH. The alteration was generally highly dependent on the ETO concentration, time, and temperature. At 37 °C 24 h after (T24h), regarding ETO concentration, R² correlation ratio was 0.65 (p<0.001), 0.70 (p<0.001), and 0.89 (p<0.001) for ATP levels, protein content, and viability, respectively. The lowest ETO concentration producing a significant effect was 0.25 mM. Concerning time dependency (i.e., T24h versus after 5 h (T5h)), at 37 °C with ETO, ATP level continued to significantly decrease between T5h and T24h. In a similar way, at 37 °C, the MTT viability test decrease was accelerated only between T5h and T24h for ETO concentrations higher than 0.5 mM (p=0.016 and p=0.0001 for 0.75 and 1 mM, respectively). On the contrary, with TBOOH, comparing T24h versus T5h, cellular indicators were improved but generally remained lower than MEM without any interfering agent at T24h, suggesting that TBOOH action was time limited probably in relation with its oxidation in cell medium. This study confirms the interest of altered ETO cell model to screen agents (or formulation) prone to prevent or treat energetic depletion in relation with oxidative stress.


Assuntos
Compostos de Epóxi/farmacologia , Modelos Biológicos , terc-Butil Hidroperóxido/farmacologia , Trifosfato de Adenosina/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo
17.
Arthritis Rheum ; 62(9): 2651-61, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20496421

RESUMO

OBJECTIVE: Glucocorticoid-induced leucine zipper (GILZ) is a glucocorticoid-induced protein, the reported molecular interactions of which suggest that it functions to inhibit inflammation. However, the role of endogenous GILZ in the regulation of inflammation in vivo has not been established. This study was undertaken to examine the expression and function of GILZ in vivo in collagen-induced arthritis (CIA), a murine model of rheumatoid arthritis (RA), and in RA synoviocytes. METHODS: GILZ expression was detected in mouse and human synovium by immunohistochemistry and in cultured cells by real-time polymerase chain reaction and permeabilization flow cytometry. GILZ function was assessed in vivo by small interfering RNA (siRNA) silencing using cationic liposome-encapsulated GILZ or control nontargeting siRNA and was assessed in vitro using transient overexpression. RESULTS: GILZ was readily detectable in the synovium of mice with CIA and was up-regulated by therapeutic doses of glucocorticoids. Depleting GILZ expression in vivo increased the clinical and histologic severity of CIA and increased synovial expression of tumor necrosis factor and interleukin-1 (IL-1), without affecting the levels of circulating cytokines or anticollagen antibodies. GILZ was highly expressed in the synovium of patients with active RA and in cultured RA synovial fibroblasts, and GILZ overexpression in synovial fibroblasts inhibited IL-6 and IL-8 release. CONCLUSION: Our findings indicate that GILZ functions as an endogenous inhibitor of chronic inflammation via effects on cytokine expression and suggest that local modulation of GILZ expression could be a beneficial therapeutic strategy.


Assuntos
Artrite Experimental/metabolismo , Glucocorticoides/fisiologia , Mediadores da Inflamação/fisiologia , Fatores de Transcrição/metabolismo , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Células Cultivadas , Citocinas/metabolismo , Dexametasona/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Inativação Gênica , Glucocorticoides/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos DBA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Fatores de Transcrição/genética , Transfecção
18.
Pharmaceutics ; 13(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34834222

RESUMO

The incorporation of siRNA into nanocarriers is mandatory to facilitate its intracellular delivery, as siRNA itself cannot enter cells. However, the incorporation of these nanocarriers into oral, solid dosage forms and their fate in the gastrointestinal environment is yet to be explored. In the present work, the fate of, (i) naked siRNA, (ii) freshly prepared siRNA lipoplexes, and (iii) tableted siRNA lipoplexes, in simulated gastric and intestinal fluids was studied. The siRNA, either released from or protected within the lipoplexes, was quantified by gel electrophoresis and siRNA efficacy was assessed in cell transfection. The freshly prepared lipoplexes kept their siRNA load and transfection efficiency totally preserved during 1 h of incubation in simulated gastric fluid at 37 °C. However, in simulated intestinal fluid, despite no release of siRNA from lipoplexes after 6 h of incubation, gene silencing efficacy was dramatically decreased even after 1 h of exposure. The lipoplexes obtained from tablets efficiently protected siRNA in simulated gastric fluid, thus preserving the gene silencing efficacy, whereas their incubation in simulated intestinal fluid resulted in a marked siRNA release and decreased gene silencing efficacy. These results provided a detailed explanation for understanding the fate of siRNA in gastrointestinal conditions, when simply loaded in lipoplexes or formulated in the form of tablets.

19.
Pharmaceutics ; 13(6)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34200993

RESUMO

Since the possibility of silencing specific genes linked to retinal degeneration has become a reality with the use of small interfering RNAs (siRNAs), this technology has been widely studied to promote the treatment of several ocular diseases. Despite recent advances, the clinical success of gene silencing in the retina is significantly reduced by inherent anatomical and physiological ocular barriers, and new strategies are required to achieve intraocular therapeutic effectiveness. In this study, we developed lipoplexes, prepared with sodium alginate as an adjuvant and strategically coated with hyaluronic acid (HA-LIP), and investigated the potential neuroprotective effect of these systems in a retinal light damage model. Successful functionalization of the lipoplexes with hyaluronic acid was indicated in the dynamic light scattering and transmission electron microscopy results. Moreover, these HA-LIP nanoparticles were able to protect and deliver siRNA molecules targeting caspase-3 into the retina. After retinal degeneration induced by high light exposure, in vitro and in vivo quantitative reverse transcription-PCR (RT-qPCR) assays demonstrated significant inhibition of caspase-3 expression by HA-LIP. Furthermore, these systems were shown to be safe, as no evidence of retinal toxicity was observed by electroretinography, clinical evaluation or histology.

20.
J Control Release ; 338: 754-772, 2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-34530051

RESUMO

The receptor for advanced glycation end products (RAGE) plays a central role in the chronic inflammatory process associated with atherosclerosis development. We aimed to develop lipoplexes carrying RAGE-short hairpin (sh) RNA, targeted to the adhesion molecule P-selectin, selectively expressed on the surface of activated endothelium (Psel-lipo/shRAGE) to down-regulate RAGE expression as a therapeutic strategy for atherosclerosis. In vitro, Psel-lipo/shRAGE lipoplexes were efficiently taken up by activated endothelial cells (EC), decreased the expression of RAGE protein, and proved to be functional by reducing the monocyte adhesion to activated EC. In ApoE-deficient mice, the targeted lipoplexes accumulated specifically and efficiently transfected the aorta. The repeated administration of Psel-lipo/shRAGE lipoplexes, twice per week for one month: i) reduced the expression of RAGE protein in the aorta by decreasing the expression of NF-kB and TNF-α; ii) diminished the plasma levels of TNF-α, IL6, IL-1ß, and MCP-1; iii) inhibited the atherosclerotic plaque development and iv) had no significant adverse effects. In conclusion, the newly developed Psel-lipo/shRAGE lipoplexes reduce the inflammatory processes associated with RAGE signaling and the progression of atherosclerosis in ApoE-deficient mice. Downregulation of RAGE employing these lipoplexes may represent a promising new targeted therapy to block atherosclerosis progression.


Assuntos
Aterosclerose , Células Endoteliais , Animais , Aterosclerose/genética , Aterosclerose/terapia , Inflamação/terapia , Camundongos , Camundongos Knockout , Selectina-P , RNA Interferente Pequeno , Receptor para Produtos Finais de Glicação Avançada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA