RESUMO
The availability of educational data obtained by technology-assisted learning platforms can potentially be used to mine student behavior in order to address their problems and enhance the learning process. Educational data mining provides insights for professionals to make appropriate decisions. Learning platforms complement traditional learning environments and provide an opportunity to analyze students' performance, thus mitigating the probability of student failures. Predicting students' academic performance has become an important research area to take timely corrective actions, thereby increasing the efficacy of education systems. This study proposes an improved conditional generative adversarial network (CGAN) in combination with a deep-layer-based support vector machine (SVM) to predict students' performance through school and home tutoring. Students' educational datasets are predominantly small in size; to handle this problem, synthetic data samples are generated by an improved CGAN. To prove its effectiveness, results are compared with and without applying CGAN. Results indicate that school and home tutoring combined have a positive impact on students' performance when the model is trained after applying CGAN. For an extensive evaluation of deep SVM, multiple kernel-based approaches are investigated, including radial, linear, sigmoid, and polynomial functions, and their performance is analyzed. The proposed improved CGAN coupled with deep SVM outperforms in terms of sensitivity, specificity, and area under the curve when compared with solutions from the existing literature.
Assuntos
Desempenho Acadêmico , Máquina de Vetores de Suporte , Algoritmos , Humanos , Aprendizagem , EstudantesRESUMO
Hyperspectral Images (HSI) classification is a challenging task due to a large number of spatial-spectral bands of images with high inter-similarity, extra variability classes, and complex region relationships, including overlapping and nested regions. Classification becomes a complex problem in remote sensing images like HSIs. Convolutional Neural Networks (CNNs) have gained popularity in addressing this challenge by focusing on HSI data classification. However, the performance of 2D-CNN methods heavily relies on spatial information, while 3D-CNN methods offer an alternative approach by considering both spectral and spatial information. Nonetheless, the computational complexity of 3D-CNN methods increases significantly due to the large capacity size and spectral dimensions. These methods also face difficulties in manipulating information from local intrinsic detailed patterns of feature maps and low-rank frequency feature tuning. To overcome these challenges and improve HSI classification performance, we propose an innovative approach called the Attention 3D Central Difference Convolutional Dense Network (3D-CDC Attention DenseNet). Our 3D-CDC method leverages the manipulation of local intrinsic detailed patterns in the spatial-spectral features maps, utilizing pixel-wise concatenation and spatial attention mechanism within a dense strategy to incorporate low-rank frequency features and guide the feature tuning. Experimental results on benchmark datasets such as Pavia University, Houston 2018, and Indian Pines demonstrate the superiority of our method compared to other HSI classification methods, including state-of-the-art techniques. The proposed method achieved 97.93% overall accuracy on the Houston-2018, 99.89% on Pavia University, and 99.38% on the Indian Pines dataset with the 25 × 25 window size.
Assuntos
Benchmarking , Redes Neurais de Computação , Telemetria , UniversidadesRESUMO
Mobile app stores, such as Google Play, have become famous platforms for practically all types of software and services for mobile phone users. Users may browse and download apps via app stores, which also help developers monitor their apps by allowing users to rate and review them. App reviews may contain the user's experience, bug details, requests for additional features, or a textual rating of the app. These ratings can be frequently biased due to inadequate votes. However, there are significant discrepancies between the numerical ratings and the user reviews. This study uses a transfer learning approach to predict the numerical ratings of Google apps. It benefits from user-provided numeric ratings of apps as the training data and provides authentic ratings of mobile apps by analyzing users' reviews. A transfer learning-based model ELMo is proposed for this purpose which is based on the word vector feature representation technique. The performance of the proposed model is compared with three other transfer learning and five machine learning models. The dataset is scrapped from the Google Play store which extracts the data from 14 different categories of apps. First, biased and unbiased user rating is segregated using TextBlob analysis to formulate the ground truth, and then classifiers prediction accuracy is evaluated. Results demonstrate that the ELMo classifier has a high potential to predict authentic numeric ratings with user actual reviews.
RESUMO
Blood cancer has emerged as a growing concern over the past decade, necessitating early diagnosis for timely and effective treatment. The present diagnostic method, which involves a battery of tests and medical experts, is costly and time-consuming. For this reason, it is crucial to establish an automated diagnostic system for accurate predictions. A particular field of focus in medical research is the use of machine learning and leukemia microarray gene data for blood cancer diagnosis. Even with a great deal of research, more improvements are needed to reach the appropriate levels of accuracy and efficacy. This work presents a supervised machine-learning algorithm for blood cancer prediction. This work makes use of the 22,283-gene leukemia microarray gene data. Chi-squared (Chi2) feature selection methods and the synthetic minority oversampling technique (SMOTE)-Tomek resampling is used to overcome issues with imbalanced and high-dimensional datasets. To balance the dataset for each target class, SMOTE-Tomek creates synthetic data, and Chi2 chooses the most important features to train the learning models from 22,283 genes. A novel weighted convolutional neural network (CNN) model is proposed for classification, utilizing the support of three separate CNN models. To determine the importance of the proposed approach, extensive experiments are carried out on the datasets, including a performance comparison with the most advanced techniques. Weighted CNN demonstrates superior performance over other models when coupled with SMOTE-Tomek and Chi2 techniques, achieving a remarkable 99.9% accuracy. Results from k-fold cross-validation further affirm the supremacy of the proposed model.
Assuntos
Leucemia , Redes Neurais de Computação , Humanos , Leucemia/genética , Algoritmos , Neoplasias Hematológicas/genética , Aprendizado de Máquina Supervisionado , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Aprendizado de Máquina , Perfilação da Expressão Gênica/métodosRESUMO
A common clinical method for identifying anomalies in bone growth in infants and newborns is skeletal age estimation with X-ray images. Children's bone abnormalities can result from several conditions including wounds, infections, or tumors. One of the most frequent reasons for bone issues is that most youngsters are affected by the slow displacement of bones caused by pressure applied to the growth plates as youngsters develop. The growth plate can be harmed by a lack of blood supply, separation from other parts of the bone, or slight misalignment. Problems with the growth plate prevent bones from developing, cause joint distortion, and may cause permanent joint injury. A significant discrepancy between the chronological and assessed ages may indicate a growth problem because determining bone age represents the real level of growth. Therefore, skeletal age estimation is performed to look for endocrine disorders, genetic problems, and growth anomalies. To address the bone age assessment challenge, this study uses the Radiological Society of North America's Pediatric Bone Age Challenge dataset which contains 12,600 radiological images of the left hand of a patient that includes the gender and bone age information. A bone age evaluation system based on the hand skeleton guidelines is proposed in this study for the detection of hand bone maturation. The proposed approach is based on a customized convolutional neural network. For the calculation of the skeletal age, different data augmentation techniques are used; these techniques not only increase the dataset size but also impact the training of the model. The performance of the model is assessed against the Visual Geometry Group (VGG) model. Results demonstrate that the customized convolutional neural network (CNN) model outperforms the VGG model with 97% accuracy.
RESUMO
Objective: Cervical cancer ranks among the top causes of death among females in developing countries. The most important procedures that should be followed to guarantee the minimizing of cervical cancer's aftereffects are early identification and treatment under the finest medical guidance. One of the best methods to find this sort of malignancy is by looking at a Pap smear image. For automated detection of cervical cancer, the available datasets often have missing values, which can significantly affect the performance of machine learning models. Methods: To address these challenges, this study proposes an automated system for predicting cervical cancer that efficiently handles missing values with SMOTE features to achieve high accuracy. The proposed system employs a stacked ensemble voting classifier model that combines three machine learning models, along with KNN Imputer and SMOTE up-sampled features for handling missing values. Results: The proposed model achieves 99.99% accuracy, 99.99% precision, 99.99% recall, and 99.99% F1 score when using KNN imputed SMOTE features. The study compares the performance of the proposed model with multiple other machine learning algorithms under four scenarios: with missing values removed, with KNN imputation, with SMOTE features, and with KNN imputed SMOTE features. The study validates the efficacy of the proposed model against existing state-of-the-art approaches. Conclusions: This study investigates the issue of missing values and class imbalance in the data collected for cervical cancer detection and might aid medical practitioners in timely detection and providing cervical cancer patients with better care.
RESUMO
Predicting student performance automatically is of utmost importance, due to the substantial volume of data within educational databases. Educational data mining (EDM) devises techniques to uncover insights from data originating in educational settings. Artificial intelligence (AI) can mine educational data to predict student performance and provide measures to help students avoid failing and learn better. Learning platforms complement traditional learning settings by analyzing student performance, which can help reduce the chance of student failure. Existing methods for student performance prediction in educational data mining faced challenges such as limited accuracy, imbalanced data, and difficulties in feature engineering. These issues hindered effective adaptability and generalization across diverse educational contexts. This study proposes a machine learning-based system with deep convoluted features for the prediction of students' academic performance. The proposed framework is employed to predict student academic performance using balanced as well as, imbalanced datasets using the synthetic minority oversampling technique (SMOTE). In addition, the performance is also evaluated using the original and deep convoluted features. Experimental results indicate that the use of deep convoluted features provides improved prediction accuracy compared to original features. Results obtained using the extra tree classifier with convoluted features show the highest classification accuracy of 99.9%. In comparison with the state-of-the-art approaches, the proposed approach achieved higher performance. This research introduces a powerful AI-driven system for student performance prediction, offering substantial advancements in accuracy compared to existing approaches.
Assuntos
Desempenho Acadêmico , Inteligência Artificial , Humanos , Estudantes , Aprendizado de Máquina , EscolaridadeRESUMO
For the past few years, the concept of the smart house has gained popularity. The major challenges concerning a smart home include data security, privacy issues, authentication, secure identification, and automated decision-making of Internet of Things (IoT) devices. Currently, existing home automation systems address either of these challenges, however, home automation that also involves automated decision-making systems and systematic features apart from being reliable and safe is an absolute necessity. The current study proposes a deep learning-driven smart home system that integrates a Convolutional neural network (CNN) for automated decision-making such as classifying the device as "ON" and "OFF" based on its utilization at home. Additionally, to provide a decentralized, secure, and reliable mechanism to assure the authentication and identification of the IoT devices we integrated the emerging blockchain technology into this study. The proposed system is fundamentally comprised of a variety of sensors, a 5 V relay circuit, and Raspberry Pi which operates as a server and maintains the database of each device being used. Moreover, an android application is developed which communicates with the Raspberry Pi interface using the Apache server and HTTP web interface. The practicality of the proposed system for home automation is tested and evaluated in the lab and in real-time to ensure its efficacy. The current study also assures that the technology and hardware utilized in the proposed smart house system are inexpensive, widely available, and scalable. Furthermore, the need for a more comprehensive security and privacy model to be incorporated into the design phase of smart homes is highlighted by a discussion of the risks analysis' implications including cyber threats, hardware security, and cyber attacks. The experimental results emphasize the significance of the proposed system and validate its usability in the real world.
RESUMO
The disease known as COVID-19 has turned into a pandemic and spread all over the world. The fourth industrial revolution known as Industry 4.0 includes digitization, the Internet of Things, and artificial intelligence. Industry 4.0 has the potential to fulfil customized requirements during the COVID-19 emergency crises. The development of a prediction framework can help health authorities to react appropriately and rapidly. Clinical imaging like X-rays and computed tomography (CT) can play a significant part in the early diagnosis of COVID-19 patients that will help with appropriate treatment. The X-ray images could help in developing an automated system for the rapid identification of COVID-19 patients. This study makes use of a deep convolutional neural network (CNN) to extract significant features and discriminate X-ray images of infected patients from non-infected ones. Multiple image processing techniques are used to extract a region of interest (ROI) from the entire X-ray image. The ImageDataGenerator class is used to overcome the small dataset size and generate ten thousand augmented images. The performance of the proposed approach has been compared with state-of-the-art VGG16, AlexNet, and InceptionV3 models. Results demonstrate that the proposed CNN model outperforms other baseline models with high accuracy values: 97.68% for two classes, 89.85% for three classes, and 84.76% for four classes. This system allows COVID-19 patients to be processed by an automated screening system with minimal human contact.
Assuntos
COVID-19 , Aprendizado Profundo , Inteligência Artificial , Humanos , Pandemias , SARS-CoV-2RESUMO
Sentiment analysis has been researched extensively during the last few years, however, the sentiment analysis of citations in a research article is an unexplored research area. Sentiment analysis of citations can provide new applications in bibliometrics and provide insights for a better understanding of scientific knowledge. Citation count, as it is used today to measure the quality of a paper, does not portray the quality of a scientific article, as the article may be cited to indicate its weakness. So determining the polarity of a citation is an important task to quantify the quality of the cited article and ascertain its impact and ranking. This article presents an approach to determine the polarity of the cited article using term frequency-inverse document frequency and machine learning classifiers. To analyze the influence of an imbalanced dataset, several experiments are performed with and without the synthetic minority oversampling technique (SMOTE) and uni-gram and bi-gram term frequency-inverse document frequency (TF-IDF). Results indicate that the proposed methodology achieves high accuracy of 99.0% with the extra tree classifier when trained on SMOTE oversampled dataset and bi-gram features.
RESUMO
Breast cancer is a common cause of female mortality in developing countries. Screening and early diagnosis can play an important role in the prevention and treatment of these cancers. This study proposes an ensemble learning-based voting classifier that combines the logistic regression and stochastic gradient descent classifier with deep convoluted features for the accurate detection of cancerous patients. Deep convoluted features are extracted from the microscopic features and fed to the ensemble voting classifier. This idea provides an optimized framework that accurately classifies malignant and benign tumors with improved accuracy. Results obtained using the voting classifier with convoluted features demonstrate that the highest classification accuracy of 100% is achieved. The proposed approach revealed the accuracy enhancement in comparison with the state-of-the-art approaches.