Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396814

RESUMO

Methadone is an effective and long-lasting analgesic drug that is also used in medication-assisted treatment for people with opioid use disorders. Although there is evidence that methadone activates µ-opioid and Toll-like-4 receptors (TLR-4s), its effects on distinct immune cells, including mast cells (MCs), are not well characterized. MCs express µ-opioid and Toll-like receptors (TLRs) and constitute an important cell lineage involved in allergy and effective innate immunity responses. In the present study, murine bone-marrow-derived mast cells (BMMCs) were treated with methadone to evaluate cell viability by flow cytometry, cell morphology with immunofluorescence and scanning electron microscopy, reactive oxygen species (ROS) production, and intracellular calcium concentration ([Ca2+]i) increase. We found that exposure of BMMCs to 0.5 mM or 1 mM methadone rapidly induced cell death by forming extracellular DNA traps (ETosis). Methadone-induced cell death depended on ROS formation and [Ca2+]i. Using pharmacological approaches and TLR4-defective BMMC cultures, we found that µ-opioid receptors were necessary for both methadone-induced ROS production and intracellular calcium increase. Remarkably, TLR4 receptors were also involved in methadone-induced ROS production as it did not occur in BMMCs obtained from TLR4-deficient mice. Finally, confocal microscopy images showed a significant co-localization of µ-opioid and TLR4 receptors that increased after methadone treatment. Our results suggest that methadone produces MCETosis by a mechanism requiring a novel crosstalk pathway between µ-opioid and TLR4 receptors.


Assuntos
Analgésicos Opioides , Armadilhas Extracelulares , Humanos , Animais , Camundongos , Analgésicos Opioides/farmacologia , Receptor 4 Toll-Like/metabolismo , Metadona/farmacologia , Mastócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Medula Óssea/metabolismo , Cálcio/metabolismo , Armadilhas Extracelulares/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptores Toll-Like/metabolismo
2.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047288

RESUMO

Mast cells (MCs) are the main participants in the control of immune reactions associated with inflammation, allergies, defense against pathogens, and tumor growth. Bioactive lipids are lipophilic compounds able to modulate MC activation. Here, we explored some of the effects of the bioactive lipid lysophosphatidylinositol (LPI) on MCs. Utilizing murine bone marrow-derived mast cells (BMMCs), we found that LPI did not cause degranulation, but slightly increased FcεRI-dependent ß-hexosaminidase release. However, LPI induced strong chemotaxis together with changes in LIM kinase (LIMK) and cofilin phosphorylation. LPI also promoted modifications to actin cytoskeleton dynamics that were detected by an increase in cell size and interruptions in the continuity of the cortical actin ring. The chemotaxis and cortical actin ring changes were dependent on GPR55 receptor activation, since the specific agonist O1602 mimicked the effects of LPI and the selective antagonist ML193 prevented them. The LPI and O1602-dependent stimulation of BMMC also led to VEGF, TNF, IL-1α, and IL-1ß mRNA accumulation, but, in contrast with chemotaxis-related processes, the effects on cytokine transcription were dependent on GPR55 and cannabinoid (CB) 2 receptors, since they were sensitive to ML193 and to the specific CB2 receptor antagonist AM630. Remarkably, GPR55-dependent BMMC chemotaxis was observed towards conditioned media from distinct mouse and human cancer cells. Our data suggest that LPI induces the chemotaxis of MCs and leads to cytokine production in MC in vitro with the differential participation of GPR55 and CB2 receptors. These effects could play a significant role in the recruitment of MCs to tumors and the production of MC-derived pro-angiogenic factors in the tumor microenvironment.


Assuntos
Receptor CB2 de Canabinoide , Receptores Acoplados a Proteínas G , Camundongos , Humanos , Animais , Receptores Acoplados a Proteínas G/genética , Receptor CB2 de Canabinoide/genética , Quimiotaxia , Mastócitos , Citocinas , Actinas , Receptores de Canabinoides/genética , Lisofosfolipídeos/farmacologia , Lisofosfolipídeos/fisiologia
3.
Rev Invest Clin ; 75(3): 129-142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441764

RESUMO

Alcohol consumption has been linked to numerous pathologic conditions, including infectious diseases and several types of cancer. Alcohol exerts its modulatory effects on the immune system (IS) in a dose- and time-dependent manner. Numerous studies indicate that these alterations affect responses such as peripheral inflammation or decreased antibody production and promote chronic inflammation, leading to cell death. The molecular mechanisms underlying these effects involve generating an oxidative tissue environment, producing cell damage-associated molecular patterns (DAMPs), and activating pattern recognition receptors. In particular, toll-like receptors and their signaling system emerge as central elements whose activity is altered by alcohol intake. There is also some epidemiological evidence demonstrating the causal role of alcohol in the development of various types of cancer, such as head-and-neck cancer, esophageal cancer, colorectal cancer, liver cancer, and breast cancer. Most recent evidence suggests that factors related to alcohol consumption and cancer include increased levels of acetaldehyde, production of reactive oxygen species, alteration in DNA methylation, and modifications in retinoid metabolism. In addition, changes associated with alcohol use on the IS and intestinal microbiota may favor the growth of some types of tumors.


Assuntos
Neoplasias da Mama , Etanol , Humanos , Feminino , Etanol/metabolismo , Acetaldeído/metabolismo , Consumo de Bebidas Alcoólicas/efeitos adversos , Inflamação
4.
J Neurochem ; 160(2): 256-270, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34665461

RESUMO

Huntington´s disease (HD) is a pathological condition that can be studied in mice by the administration of quinolinic acid (QUIN), an agonist of the N-methyl-d-aspartate receptor (NMDAR) that induces NMDAR-mediated cytotoxicity and neuroinflammation. Mast cells (MCs) participate in numerous inflammatory processes through the release of important amounts of histamine (HA). In this study, we aimed to characterize the participation of MCs and HA in the establishment of neural and oxidative damage in the QUIN-induced model of HD. C57BL6/J mice (WT), MC-deficient c-KitW-sh/W-sh (Wsh) mice and Wsh mice reconstituted by intracerebroventricular (i.c.v.) injection of 5 × 105 bone marrow-derived mast cells (BMMCs), or i.c.v. administered with HA (5 µg) were used. All groups of animals were intrastriatally injected with 1 µL QUIN (30 nmol/µL) and 3 days later, apomorphine-induced circling behavior, striatal GABA levels and the number of Fluoro-Jade positive cells, as indicators of neuronal damage, were determined. Also, lipid peroxidation (LP) and reactive oxygen species production (ROS), as markers of oxidative damage, were analyzed. Wsh mice showed less QUIN-induced neuronal and oxidative damage than WT and Wsh-MC reconstituted animals. Histamine administration restored the QUIN-induced neuronal and oxidative damage in the non-reconstituted Wsh mice to levels equivalent or superior to those observed in WT mice. Our results demonstrate that MCs and HA participate in the neuronal and oxidative damages observed in mice subjected to the QUIN -induced model of Huntington's disease.


Assuntos
Histamina/imunologia , Doença de Huntington/imunologia , Doença de Huntington/patologia , Mastócitos/imunologia , Neurônios/patologia , Animais , Modelos Animais de Doenças , Feminino , Histamina/metabolismo , Doença de Huntington/induzido quimicamente , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ácido Quinolínico/toxicidade
5.
Cell Mol Neurobiol ; 42(3): 677-694, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32926257

RESUMO

Morphine promotes neuroinflammation after NOD-like receptor protein 3 (NLRP3) oligomerization in glial cells, but the capacity of other opioids to induce neuroinflammation and its relationship to the development of analgesic tolerance is unknown. We studied the effects of morphine and fentanyl on NLRP3 inflammasome activation in glial and neuronal cells in the dorsal raphe nucleus (DRN), a region involved in pain regulation. Male Wistar rats received i.p. injections of morphine (10 mg/kg) or fentanyl (0.1 mg/kg) 3 × daily for 7 days and were tested for nociception. Two hours after the last (19th) administration, we analyzed NLRP3 oligomerization, caspase-1 activation and gasdermin D-N (GSDMD-N) expression in microglia (CD11b positive cells), astrocytes (GFAP-positive cells) and neurons (NeuN-positive cells). Tolerance developed to both opioids, but only fentanyl produced hyperalgesia. Morphine and fentanyl activated NLRP3 inflammasome in astrocytes and serotonergic (TPH-2-positive) neurons, but fentanyl effects were more pronounced. Both opioids increased GFAP and CD11b immunoreactivity, caspase-1 and GSDMD activation, indicating pyroptotic cell death. The opioid receptor antagonist (-)-naloxone, but not the TLR4 receptor antagonist (+)-naloxone, prevented microglia activation and NLRP3 oligomerization. Only (+)-naloxone prevented astrocytes' activation. The anti-inflammatory agent minocycline and the NLRP3 inhibitor MCC950 delayed tolerance to morphine and fentanyl antinociception and prevented fentanyl-induced hyperalgesia. MCC950 also prevented opioid-induced NLRP3 oligomerization. In conclusion, morphine and fentanyl differentially induce cell-specific activation of NLRP3 inflammasome and pyroptosis in the DRN through TLR4 receptors in astrocytes and through opioid receptors in neurons, indicating that neuroinflammation is involved in opioid-induced analgesia and fentanyl-induced hyperalgesia after repeated administrations.


Assuntos
Fentanila , Morfina , Analgésicos Opioides/farmacologia , Animais , Núcleo Dorsal da Rafe/metabolismo , Fentanila/farmacologia , Masculino , Morfina/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR , Piroptose , Ratos , Ratos Wistar , Receptores Opioides/metabolismo , Receptor 4 Toll-Like/metabolismo
6.
J Immunol ; 204(4): 1056-1068, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31900336

RESUMO

Hypoxia is a condition that together with low pH, high amounts of reactive oxygen species (ROS), and increased adenosine levels characterize tumor microenvironment. Mast cells (MCs) are part of tumor microenvironment, but the effect of hypoxia on the production of MC-derived cytokines has not been fully described. Using the hypoxia marker pimonidazole in vivo, we found that MCs were largely located in the low-oxygen areas within B16-F1 mice melanoma tumors. In vitro, hypoxia promoted ROS production, a ROS-dependent increase of intracellular calcium, and the production of MCP 1 (CCL-2) in murine bone marrow-derived MCs. Hypoxia-induced CCL-2 production was sensitive to the antioxidant trolox and to nifedipine, a blocker of L-type voltage-dependent Ca2+ channels (LVDCCs). Simultaneously with CCL-2 production, hypoxia caused the ROS-dependent glutathionylation and membrane translocation of the α1c subunit of Cav1.2 LVDCCs. Relationship between ROS production, calcium rise, and CCL-2 synthesis was also observed when cells were treated with H2O2 In vivo, high CCL-2 production was detected on hypoxic zones of melanoma tumors (where tryptase-positive MCs were also found). Pimonidazole and CCL-2 positive staining diminished when B16-F1 cell-inoculated animals were treated with trolox, nifedipine, or the adenosine receptor 2A antagonist KW6002. Our results show that MCs are located preferentially in hypoxic zones of melanoma tumors, hypoxia-induced CCL-2 production in MCs requires calcium rise mediated by glutathionylation and membrane translocation of LVDCCs, and this mechanism of CCL-2 synthesis seems to operate in other cells inside melanoma tumors, with the participation of the adenosine receptor 2A.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Quimiocina CCL2/metabolismo , Mastócitos/imunologia , Melanoma Experimental/imunologia , Microambiente Tumoral/imunologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Antioxidantes/farmacologia , Biópsia , Bloqueadores dos Canais de Cálcio/farmacologia , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/imunologia , Linhagem Celular Tumoral/transplante , Quimiocina CCL2/imunologia , Peróxido de Hidrogênio/farmacologia , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Melanoma Experimental/patologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Receptor A2A de Adenosina/metabolismo , Microambiente Tumoral/efeitos dos fármacos
7.
J Immunol ; 202(8): 2360-2371, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30814309

RESUMO

Mast cells (MCs) contribute to the control of local inflammatory reactions and become hyporesponsive after prolonged TLR4 activation by bacterial LPS. The molecular mechanisms involved in endotoxin tolerance (ET) induction in MCs are not fully understood. In this study, we demonstrate that the endocannabinoid 2-arachidonoylglycerol (2-AG) and its receptor, cannabinoid receptor 2 (CB2), play a role in the establishment of ET in bone marrow-derived MCs from C57BL/6J mice. We found that CB2 antagonism prevented the development of ET and that bone marrow-derived MCs produce 2-AG in a TLR4-dependent fashion. Exogenous 2-AG induced ET similarly to LPS, blocking the phosphorylation of IKK and the p65 subunit of NF-κB and inducing the synthesis of molecular markers of ET. LPS caused CB2 receptor trafficking in Rab11-, Rab7-, and Lamp2-positive vesicles, indicating recycling and degradation of the receptor. 2-AG also prevented LPS-induced TNF secretion in vivo, in a MC-dependent model of endotoxemia, demonstrating that TLR4 engagement leads to 2-AG secretion, which contributes to the negative control of MCs activation. Our study uncovers a functional role for the endocannabinoid system in the inhibition of MC-dependent innate immune responses in vivo.


Assuntos
Ácidos Araquidônicos/farmacologia , Endocanabinoides/farmacologia , Glicerídeos/farmacologia , Tolerância Imunológica/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Mastócitos/imunologia , Receptor CB2 de Canabinoide/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Tolerância Imunológica/imunologia , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteína 2 de Membrana Associada ao Lisossomo/imunologia , Camundongos , Camundongos Knockout , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Transporte Proteico/imunologia , Receptor CB2 de Canabinoide/genética , Receptor 4 Toll-Like/genética , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/imunologia , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/imunologia , proteínas de unión al GTP Rab7
8.
J Neuroinflammation ; 17(1): 95, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32220257

RESUMO

BACKGROUND: Huntington's disease (HD) is caused by the expression of a mutated variant of Huntingtin (mHtt), which results in the complex pathology characterized by a defective function of the nervous system and altered inflammatory responses. While the neuronal effects of mHtt expression have been extensively studied, its effects on the physiology of immune cells have not been fully described. Mast cells (MCs) are unique tissue-resident immune cells whose activation has been linked to protective responses against parasites and bacteria, but also to deleterious inflammatory allergic reactions and, recently, to neurodegenerative diseases. METHODS: Bone marrow-derived mast cells (BMMCs) were obtained from wild-type (WT-) and mHtt-expressing (R6/1) mice to evaluate the main activation parameters triggered by the high-affinity IgE receptor (FcεRI) and the Toll-like receptor (TLR) 4. Degranulation was assessed by measuring the secretion of ß-hexosaminidase, MAP kinase activation was detected by Western blot, and cytokine production was determined by RT-PCR and ELISA. TLR-4 receptor and Htt vesicular trafficking was analyzed by confocal microscopy. In vivo, MC-deficient mice (c-KitWsh/Wsh) were intraperitonally reconstituted with WT or R6/1 BMMCs and the TLR4-induced production of the tumor necrosis factor (TNF) was determined by ELISA. A survival curve of mice treated with a sub-lethal dose of bacterial lipopolysaccharide (LPS) was constructed. RESULTS: R6/1 BMMCs showed normal ß-hexosaminidase release levels in response to FcεRI, but lower cytokine production upon LPS stimulus. Impaired TLR4-induced TNF production was associated to the lack of intracellular dynamin-dependent TLR-4 receptor trafficking to perinuclear regions in BMMCs, a diminished ERK1/2 and ELK-1 phosphorylation, and a decrease in c-fos and TNF mRNA accumulation. R6/1 BMMCs also failed to produce TLR4-induced anti-inflammatory cytokines (like IL-10 and TGF-ß). The detected defects were also observed in vivo, in a MCs-dependent model of endotoxemia. R6/1 and c-KitWsh/Wsh mice reconstituted with R6/1 BMMCs showed a decreased TLR4-induced TNF production and lower survival rates to LPS challenge than WT mice. CONCLUSIONS: Our data show that mHtt expression causes an impaired production of pro- and anti-inflammatory mediators triggered by TLR-4 receptor in MCs in vitro and in vivo, which could contribute to the aberrant immunophenotype observed in HD.


Assuntos
Citocinas/metabolismo , Proteína Huntingtina/genética , Mastócitos/metabolismo , Transporte Proteico/genética , Receptor 4 Toll-Like/metabolismo , Animais , Endotoxemia/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos , Camundongos , Camundongos Transgênicos , Receptores de IgE/metabolismo , Transdução de Sinais/fisiologia
9.
Am J Perinatol ; 37(4): 421-429, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30991438

RESUMO

OBJECTIVE: The SENTINEL1 observational study characterized confirmed respiratory syncytial virus hospitalizations (RSVH) among U.S. preterm infants born at 29 to 35 weeks' gestational age (wGA) not receiving respiratory syncytial virus (RSV) immunoprophylaxis (IP) during the 2014 to 2015 and 2015 to 2016 RSV seasons. STUDY DESIGN: All laboratory-confirmed RSVH at participating sites during the 2014 to 2015 and 2015 to 2016 RSV seasons (October 1-April 30) lasting ≥24 hours among preterm infants 29 to 35 wGA and aged <12 months who did not receive RSV IP within 35 days before onset of symptoms were identified and characterized. RESULTS: Results were similar across the two seasons. Among infants with community-acquired RSVH (N = 1,378), 45% were admitted to the intensive care unit (ICU) and 19% required invasive mechanical ventilation (IMV). There were two deaths. Infants aged <6 months accounted for 78% of RSVH observed, 84% of ICU admissions, and 91% requiring IMV. Among infants who were discharged from their birth hospitalization during the RSV season, 82% of RSVH occurred within 60 days of birth hospitalization discharge. CONCLUSION: Among U.S. preterm infants 29 to 35 wGA not receiving RSV IP, RSVH are often severe with almost one-half requiring ICU admission and about one in five needing IMV.


Assuntos
Hospitalização/estatística & dados numéricos , Doenças do Prematuro/epidemiologia , Recém-Nascido Prematuro , Infecções por Vírus Respiratório Sincicial/epidemiologia , Vírus Sincicial Respiratório Humano , Antivirais/uso terapêutico , Infecções Comunitárias Adquiridas/epidemiologia , Feminino , Humanos , Lactente , Recém-Nascido , Doenças do Prematuro/prevenção & controle , Doenças do Prematuro/terapia , Unidades de Terapia Intensiva Pediátrica , Masculino , Análise Multivariada , Razão de Chances , Palivizumab/uso terapêutico , Respiração Artificial , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/terapia , Estados Unidos/epidemiologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-29891609

RESUMO

Solithromycin is a novel fluoroketolide antibiotic which was under investigation for the treatment of community-acquired bacterial pneumonia (CABP). A phase 1 study was performed to characterize the pharmacokinetics (PK) and safety of solithromycin in children. Eighty-four subjects (median age, 6 years [age range, 4 days to 17 years]) were administered intravenous (i.v.) or oral (capsules or suspension) solithromycin (i.v., 6 to 8 mg/kg of body weight; capsules/suspension, 14 to 16 mg/kg on days 1 and 7 to 15 mg/kg on days 2 to 5). PK samples were collected after the first and multidose administration. Data from 83 subjects (662 samples) were combined with previously collected adolescent PK data (n = 13; median age, 16 years [age range, 12 to 17 years]) following capsule administration to perform a population PK analysis. A 2-compartment PK model characterized the data well, and postmenstrual age was the only significant covariate after accounting for body size differences. Dosing simulations suggested that 8 mg/kg i.v. daily and oral dosing of 20 mg/kg on day 1 (800-mg adult maximum) followed by 10 mg/kg on days 2 to 5 (400-mg adult maximum) would achieve a pediatric solithromycin exposure consistent with the exposures observed in adults. Seventy-six treatment-emergent adverse events (TEAEs) were reported in 40 subjects. Diarrhea (6 subjects) and infusion site pain or phlebitis (3 subjects) were the most frequently reported adverse events related to treatment. Two subjects experienced TEAEs of increased hepatic enzymes that were deemed not to be related to the study treatment. (The phase 1 pediatric studies discussed in this paper have been registered at ClinicalTrials.gov under identifiers NCT01966055 and NCT02268279.).


Assuntos
Macrolídeos/efeitos adversos , Macrolídeos/farmacocinética , Triazóis/efeitos adversos , Triazóis/farmacocinética , Administração Intravenosa , Administração Oral , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Macrolídeos/administração & dosagem , Masculino , Pessoa de Meia-Idade , Triazóis/administração & dosagem , Adulto Jovem
11.
Eur J Immunol ; 47(8): 1305-1316, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28586109

RESUMO

Transforming growth factor-ß (TGF-ß) is a potent mast cell (MC) chemoattractant able to modulate local inflammatory reactions. The molecular mechanism leading to TGF-ß-directed MC migration is not fully described. Here we analyzed the role of the Src family protein kinase Fyn on the main TGF-ß-induced cytoskeletal changes leading to MC migration. Utilizing bone marrow-derived mast cells (BMMCs) from WT and Fyn-deficient mice we found that BMMC migration to TGF-ß was impaired in the absence of the kinase. TGF-ß caused depolymerization of the cortical actin ring and changes on the phosphorylation of cofilin, LIMK and CAMKII only in WT cells. Defective cofilin activation and phosphorylation of regulatory proteins was detected in Fyn-deficient BMMCs and this finding correlated with a lower activity of the catalytic subunit of the phosphatase PP2A. Diminished TGF-ß-induced chemotaxis of Fyn-deficient cells was also observed in an in vivo model of MC migration (bleomycin-induced scleroderma). Our results show that Fyn kinase is an important positive effector of TGF-ß-induced chemotaxis through the control of PP2A activity and this is relevant to pathological processes that are related to TGF-ß-dependent mast cell migration.


Assuntos
Actinas/metabolismo , Quimiotaxia , Mastócitos/fisiologia , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Fator de Crescimento Transformador beta/fisiologia , Fatores de Despolimerização de Actina/metabolismo , Animais , Mastócitos/imunologia , Camundongos , Ácido Okadáico/farmacologia , Fosforilação , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-fyn/genética , Transdução de Sinais , Proteína Smad2/metabolismo
13.
J Immunol ; 196(12): 5075-88, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27183589

RESUMO

Mast cells produce proinflammatory cytokines in response to TLR4 ligands, but the signaling pathways involved are not fully described. In this study, the participation of the Src family kinase Fyn in the production of TNF after stimulation with LPS was evaluated using bone marrow-derived mast cells from wild-type and Fyn-deficient mice. Fyn(-/-) cells showed higher LPS-induced secretion of preformed and de novo-synthesized TNF. In both cell types, TNF colocalized with vesicle-associated membrane protein (VAMP)3-positive compartments. Addition of LPS provoked coalescence of VAMP3 and its interaction with synaptosomal-associated protein 23; those events were increased in the absence of Fyn. Higher TNF mRNA levels were also observed in Fyn-deficient cells as a result of increased transcription and greater mRNA stability after LPS treatment. Fyn(-/-) cells also showed higher LPS-induced activation of TAK-1 and ERK1/2, whereas IκB kinase and IκB were phosphorylated, even in basal conditions. Increased responsiveness in Fyn(-/-) cells was associated with a lower activity of protein phosphatase 2A (PP2A) and augmented activity of protein kinase C (PKC)α/ß, which was dissociated from PP2A and increased its association with the adapter protein neuroblast differentiation-associated protein (AHNAK, desmoyokin). LPS-induced PKCα/ß activity was associated with VAMP3 coalescence in WT and Fyn-deficient cells. Reconstitution of MC-deficient Wsh mice with Fyn(-/-) MCs produced greater LPS-dependent production of TNF in the peritoneal cavity. Our data show that Fyn kinase is activated after TLR4 triggering and exerts an important negative control on LPS-dependent TNF production in MCs controlling the inactivation of PP2Ac and activation of PKCα/ß necessary for the secretion of TNF by VAMP3(+) carriers.


Assuntos
Regulação da Expressão Gênica , Mastócitos/imunologia , Proteína Quinase C-alfa/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Lipopolissacarídeos/imunologia , Mastócitos/efeitos dos fármacos , Camundongos , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-fyn/deficiência , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Proteína 3 Associada à Membrana da Vesícula/metabolismo
14.
Int J Mol Sci ; 19(10)2018 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-30322153

RESUMO

The Wnt/ß-catenin signaling pathway regulates cell proliferation and differentiation and its aberrant activation in cervical cancer has been described. Persistent infection with high risk human papillomavirus (HR-HPV) is the most important factor for the development of this neoplasia, since E6 and E7 viral oncoproteins alter cellular processes, promoting cervical cancer development. A role of HPV-16 E6 in Wnt/ß-catenin signaling has been proposed, although the participation of HPV-18 E6 has not been previously studied. The aim of this work was to investigate the participation of HPV-18 E6 and E6*I, in the regulation of the Wnt/ß-catenin signaling pathway. Here, we show that E6 proteins up-regulate TCF-4 transcriptional activity and promote overexpression of Wnt target genes. In addition, it was demonstrated that E6 and E6*I bind to the TCF-4 (T cell factor 4) and ß-catenin, impacting TCF-4 stabilization. We found that both E6 and E6*I proteins interact with the promoter of Sp5, in vitro and in vivo. Moreover, although differences in TCF-4 transcriptional activation were found among E6 intratype variants, no changes were observed in the levels of regulated genes. Furthermore, our data support that E6 proteins cooperate with ß-catenin to promote cell proliferation.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Papillomavirus Humano 18/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Fator de Transcrição 4/metabolismo , Fatores de Transcrição/genética , Neoplasias do Colo do Útero/virologia , Processamento Alternativo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 18/genética , Humanos , Proteínas Oncogênicas Virais/genética , Regiões Promotoras Genéticas , Isoformas de Proteínas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Regulação para Cima , Neoplasias do Colo do Útero/metabolismo , Via de Sinalização Wnt
15.
Molecules ; 23(12)2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30572603

RESUMO

Cacalolides are a kind of sesquiterpenoids natural compounds synthesized by Psacalium decompositum (A. Gray) H. Rob. & Brettell or Psacalium peltatum (Kunth) Cass. Antioxidant and hypoglycemic effects have been found for cacalolides such as cacalol, cacalone or maturine, however, their effects on inflammatory processes are still largely unclear. The main aim of this study was to investigate the biological activities of secondary metabolites from P. decompositum and P. peltatum through two approaches: (1) chemoinformatic and toxicoinformatic analysis based on ethnopharmacologic background; and (2) the evaluation of their potential anti-inflammatory/anti-allergic effects in bone marrow-derived mast cells by IgE/antigen complexes. The bioinformatics properties of the compounds: cacalol; cacalone; cacalol acetate and maturin acetate were evaluated through Osiris DataWarrior software and Molinspiration and PROTOX server. In vitro studies were performed to test the ability of these four compounds to inhibit antigen-dependent degranulation and intracellular calcium mobilization, as well as the production of reactive oxygen species in bone marrow-derived mast cells. Our findings showed that cacalol displayed better bioinformatics properties, also exhibited a potent inhibitory activity on IgE/antigen-dependent degranulation and significantly reduced the intracellular calcium mobilization on mast cells. These data suggested that cacalol could reduce the negative effects of the mast cell-dependent inflammatory process.


Assuntos
Mastócitos/metabolismo , Psacalium/química , Receptores de IgE/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Inflamação/metabolismo , Masculino , Mastócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/metabolismo , Sesquiterpenos/farmacologia
16.
Mol Cell Neurosci ; 72: 91-100, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26808221

RESUMO

Fyn kinase is widely expressed in neuronal and glial cells of the brain, where it exerts multiple functional roles that affect fundamental physiological processes. The aim of our study was to investigate the, so far unknown, functional role of Fyn in the retina. We report that Fyn is expressed, in vivo, in a subpopulation of Müller glia. We used a mouse model of Fyn genetic ablation and Müller-enriched primary cultures to demonstrate that Fyn deficiency induces morphological alterations in the mature retina, a reduction in the thickness of the outer and inner nuclear layers and alterations in postnatal Müller cell physiology. These include shortening of Müller cell processes, a decrease in cell proliferation, inactivation of the Akt signal transduction pathway, a reduced number of focal adhesions points and decreased adhesion of these cells to the ECM. As abnormalities in Müller cell physiology have been previously associated to a compromised retinal function we evaluated behavioral responses to visual stimulation. Our results associate Fyn deficiency with impaired visual optokinetic responses under scotopic and photopic light conditions. Our study reveals novel roles for Fyn kinase in retinal morphology and Müller cell physiology and suggests that Fyn is required for optimal visual processing.


Assuntos
Células Ependimogliais/metabolismo , Proteínas Proto-Oncogênicas c-fyn/genética , Animais , Adesão Celular , Proliferação de Células , Células Cultivadas , Células Ependimogliais/citologia , Células Ependimogliais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Transdução de Sinais , Visão Ocular
17.
Neurochem Res ; 41(5): 1098-106, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26721508

RESUMO

Diabetes mellitus is a metabolic disease that leads to several complications which include retinopathy. Multiple biochemical abnormalities have been proposed to explain the development of retinopathy, including oxidative stress. Although the existence of oxidative stress has been established in the retina from long standing diabetic animals, pathogenesis and progression of retinopathy remain unclear. In order to gain insight into the pathogenesis of diabetic retinopathy, we analyzed the levels of different oxidative stress biomarkers in the retina at early stages during the progress of streptozotocin-induced diabetes. No significant changes in glutathione content, expression of NADPH-oxidase, levels of lipid peroxidation, nor production of free radicals were observed in the retina up to 45 days of diabetes induction. Likewise, a transient decrease in aconitase activity, parallel to an increase in the superoxide dismutase activity was observed at 20 days of hyperglycemia, suggesting a high capacity of retina to maintain its redox homeostasis, at least at early stages of diabetes. Nonetheless, we found an early and time-dependent increase in the levels of oxidized proteins, which was not affected by the administration of the antioxidant quercetin. Also, positive immunoreactivity to the reticulum stress protein CHOP was found in glial Müller cells of diabetic rat retinas. These findings suggest the occurrence of endoplasmic reticulum stress as a primary event in retina pathogenesis in diabetes.


Assuntos
Retinopatia Diabética/metabolismo , Estresse do Retículo Endoplasmático , Aconitato Hidratase/metabolismo , Animais , Biomarcadores/metabolismo , Células Ependimogliais/metabolismo , Radicais Livres/metabolismo , Glutationa/metabolismo , Peroxidação de Lipídeos , NADPH Oxidases/metabolismo , Estresse Oxidativo , Ratos Long-Evans , Retina/metabolismo , Fator de Transcrição CHOP/metabolismo
18.
J Cardiovasc Pharmacol ; 67(3): 246-51, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26566152

RESUMO

We evaluated the antihypertensive properties of 4-tert-buthyl-2,6-bis(thiomorpholine-4-ilmethyl)phenol (TBTIF). Spontaneously hypertensive rats were treated with TBTIF or captopril (both at 1 mg·kg⁻¹·d⁻¹ intramuscularly for 4 days), and their blood pressure (BP) was assessed. In some experiments, concentration response curves to angiotensin I or angiotensin II were generated in rat aortic rings and in the absence or presence of Ang-(1-7), N(G)-monomethyl L-arginine, or both; additionally, the angiotensin-converting enzyme (ACE) and ACE2 mRNA levels were quantified in the aortic rings using reverse transcription-polymerase chain reaction. TBTIF diminished BP and reduced angiotensin I- or angiotensin II-induced vasoconstriction. The presence of Ang-(1-7) induced a greater reduction in vasoconstriction, and this effect was reversed by L-N(G)-monomethyl arginine. Moreover, TBTIF decreased the mRNA of ACE and increased the mRNA of ACE2. In conclusion, TBTIF diminished rat BP through nitric oxide-dependent and nitric oxide-independent mechanisms. In contrast to captopril, TBTIF exhibits better antihypertensive properties through mechanisms that involve ACE2.


Assuntos
Anti-Hipertensivos/farmacologia , Aorta Torácica/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Morfolinas/farmacologia , Fenóis/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Enzima de Conversão de Angiotensina 2 , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Aorta Torácica/fisiopatologia , Captopril/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação Enzimológica da Expressão Gênica , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Endogâmicos SHR , Regulação para Cima
19.
J Immunol ; 191(6): 3400-9, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23960234

RESUMO

We have previously shown that morphine pretreatment inhibits mast cell-dependent TNF production after LPS injection in the murine peritoneal cavity. In this study, we used bone marrow-derived mast cells (BMMCs) to investigate the molecular mechanisms of that inhibition. We found that morphine prevented LPS-induced TNF secretion in these cells. The observed inhibition was not due to morphine-induced TLR4 internalization and it was related to the blockage of preformed TNF secretion. LPS-induced TNF exocytosis in BMMCs was dependent on tetanus toxin-insensitive vesicle-associated membrane proteins and calcium mobilization, as well as PI3K, MAPK, and IκB kinase (IKK) activation. TNF secretion was also associated to the phosphorylation of synaptosomal-associated protein 23 (SNAP-23), which was found forming a complex with IKK in LPS-activated BMMCs. Morphine pretreatment prevented TLR4-dependent ERK and IKK phosphorylation. Analyzing the signaling events upstream of IKK activation, we found diminished TGF-ß-activated kinase 1 (TAK1) phosphorylation and TNFR-associated factor (TRAF) 6 ubiquitination in BMMCs pretreated with morphine and stimulated with LPS. Morphine pretreatment provoked a marked increase in the formation of a molecular complex composed of TRAF6 and ß-arrestin-2. Naloxone and a combination of µ and δ opioid receptor antagonists prevented morphine inhibitory actions. In conclusion, our results show that activation of µ and δ opioid receptors with morphine suppresses TLR4-induced TNF release in mast cells, preventing the IKK-dependent phosphorylation of SNAP-23, which is necessary for TNF exocytosis, and this inhibition correlates with the formation of a ß-arrestin-2/TRAF6 complex. To our knowledge, these findings constitute the first evidence of molecular crosstalk between opioid receptors and the TLR4 signal transduction system in mast cells.


Assuntos
Arrestinas/metabolismo , Mastócitos/efeitos dos fármacos , Morfina/farmacologia , Entorpecentes/farmacologia , Proteínas Qb-SNARE/imunologia , Proteínas Qc-SNARE/imunologia , Transdução de Sinais/efeitos dos fármacos , Fator 6 Associado a Receptor de TNF/metabolismo , Animais , Ativação Enzimática , Citometria de Fluxo , Quinase I-kappa B/metabolismo , Immunoblotting , Imunoprecipitação , Lipopolissacarídeos/imunologia , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/imunologia , Fator de Necrose Tumoral alfa/metabolismo , beta-Arrestina 2 , beta-Arrestinas
20.
Brain Behav Immun ; 42: 60-4, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24975593

RESUMO

UNLABELLED: Immunosuppressive morphine actions are well characterized, but other opiates are less studied. The objectives of this work were: (a) to compare the acute effects of morphine and fentanyl to inhibit early peritoneal LPS-induced TNFα release; (b) to find if, as in the case of morphine, intraperitoneal mast cells (MCs) are the target of fentanyl's immunosuppressive actions; and (c) to analyze if repeated opiate administration induces tolerance to opiate immunosuppressive effects. Independent groups of mice received a single i.p. injection of morphine (0.1-10mg/kg) or fentanyl (0.001-0.1mg/kg) 10min prior to LPS (1mg/kg). Peritoneal TNFα levels were determined 1h later. The effects of fentanyl were analyzed in MC-deficient mice (W-sh) and in W-sh mice reconstituted with bone marrow-derived MCs. Other animals received 6 or 10 doses of morphine (10mg/kg, 3×/day) or fentanyl (0.1mg/kg 3×/day) and were then challenged with LPS. Fentanyl was equally effective and 1000× more potent than morphine to inhibit i.p. LPS-induced TNFα release and this was dependent on intraperitoneal MCs. Repeated morphine administration induced tolerance to both antinociception and inhibition of response to endotoxin. Repeated fentanyl injection did not induce significant antinociceptive tolerance, but, interestingly, produced sensitization to LPS. IN CONCLUSION: (1) opiates with different analgesic potency also differ in their potency to induce immunosuppression; (2) MCs are the cellular target of the immunosuppressive actions of fentanyl here studied; (3) in contrast with morphine, tolerance to fentanyl's immunosuppressive actions can be dissociated from tolerance to its antinociceptive effects.


Assuntos
Analgésicos/farmacologia , Fentanila/farmacologia , Imunossupressores/farmacologia , Lipopolissacarídeos/farmacologia , Morfina/farmacologia , Limiar da Dor/efeitos dos fármacos , Analgésicos/uso terapêutico , Animais , Fentanila/uso terapêutico , Imunossupressores/uso terapêutico , Masculino , Camundongos , Morfina/uso terapêutico , Dor/tratamento farmacológico , Dor/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA