Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 79(8): 424, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35841449

RESUMO

Cardiac fibroblast (CF) population heterogeneity and plasticity present a challenge for categorization of biological and functional properties. Distinct molecular markers and associated signaling pathways provide valuable insight for CF biology and interventional strategies to influence injury response and aging-associated remodeling. Receptor tyrosine kinase c-Kit mediates cell survival, proliferation, migration, and is activated by pathological injury. However, the biological significance of c-Kit within CF population has not been addressed. An inducible reporter mouse detects c-Kit promoter activation with Enhanced Green Fluorescent Protein (EGFP) expression in cardiac cells. Coincidence of EGFP and c-Kit with the DDR2 fibroblast marker was confirmed using flow cytometry and immunohistochemistry. Subsequently, CFs expressing DDR2 with or without c-Kit was isolated and characterized. A subset of DDR2+ CFs also express c-Kit with coincidence in ~ 8% of total cardiac interstitial cells (CICs). Aging is associated with decreased number of c-Kit expressing DDR2+ CFs, whereas pathological injury induces c-Kit and DDR2 as well as the frequency of coincident expression in CICs. scRNA-Seq profiling reveals the transcriptome of c-Kit expressing CFs as cells with transitional phenotype. Cultured cardiac DDR2+ fibroblasts that are c-Kit+ exhibit morphological and functional characteristics consistent with youthful phenotypes compared to c-Kit- cells. Mechanistically, c-Kit expression correlates with signaling implicated in proliferation and cell migration, including phospho-ERK and pro-caspase 3. The phenotype of c-kit+ on DDR2+ CFs correlates with multiple characteristics of 'youthful' cells. To our knowledge, this represents the first evaluation of c-Kit biology within DDR2+ CF population and provides a fundamental basis for future studies to influence myocardial biology, response to pathological injury and physiological aging.


Assuntos
Animais , Fibroblastos/metabolismo , Camundongos , Fenótipo , Proteínas Proto-Oncogênicas c-kit/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo
2.
Cardiovasc Res ; 119(3): 743-758, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35880724

RESUMO

AIMS: Declining cellular functional capacity resulting from stress or ageing is a primary contributor to impairment of myocardial performance. Molecular pathway regulation of biological processes in cardiac interstitial cells (CICs) is pivotal in stress and ageing responses. Altered localization of the RNA-binding protein Lin28A has been reported in response to environmental stress, but the role of Lin28A in response to stress in CICs has not been explored. Surface Lin28A redistribution is indicative of stress response in CIC associated with ageing and senescence. METHODS AND RESULTS: Localization of Lin28A was assessed by multiple experimental analyses and treatment conditions and correlated to oxidative stress, senescence, and ploidy in adult murine CICs. Surface Lin28A expression is present on 5% of fresh CICs and maintained through Passage 2, increasing to 21% in hyperoxic conditions but lowered to 14% in physiologic normoxia. Surface Lin28A is coincident with elevated senescence marker p16 and beta-galactosidase (ß-gal) expression in CICs expanded in hyperoxia, and also increases with polyploidization and binucleation of CICs regardless of oxygen culture. Transcriptional profiling of CICs using single-cell RNA-Seq reveals up-regulation of pathways associated with oxidative stress in CICs exhibiting surface Lin28A. Induction of surface Lin28A by oxidative stress is blunted by treatment of cells with the antioxidant Trolox in a dose-dependent manner, with 300 µM Trolox exposure maintaining characteristics of freshly isolated CICs possessing low expression of surface Lin28A and ß-gal with predominantly diploid content. CONCLUSION: Surface Lin28A is a marker of environmental oxidative stress in CICs and antioxidant treatment antagonizes this phenotype. The biological significance of Lin28 surface expression and consequences for myocardial responses may provide important insights regarding mitigation of cardiac stress and ageing.


Assuntos
Antioxidantes , Senescência Celular , Animais , Camundongos , Antioxidantes/farmacologia , Envelhecimento/genética , Envelhecimento/metabolismo , Estresse Oxidativo , Miocárdio/metabolismo
3.
Life Sci Alliance ; 5(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34810278

RESUMO

Vaping of flavored liquids has been touted as safe alternative to traditional cigarette smoking with decreased health risks. The popularity of vaping has dramatically increased over the last decade, particularly among teenagers who incorporate vaping into their daily life as a social activity. Despite widespread and increasing adoption of vaping among young adults, there is little information on long-term consequences of vaping and potential health risks. This study demonstrates vaping-induced pulmonary injury using commercial JUUL pens with flavored vape juice using an inhalation exposure murine model. Profound pathological changes to upper airway, lung tissue architecture, and cellular structure are evident within 9 wk of exposure. Marked histologic changes include increased parenchyma tissue density, cellular infiltrates proximal to airway passages, alveolar rarefaction, increased collagen deposition, and bronchial thickening with elastin fiber disruption. Transcriptional reprogramming includes significant changes to gene families coding for xenobiotic response, glycerolipid metabolic processes, and oxidative stress. Cardiac systemic output is moderately but significantly impaired with pulmonary side ventricular chamber enlargement. This vaping-induced pulmonary injury model demonstrates mechanistic underpinnings of vaping-related pathologic injury.


Assuntos
Lesão Pulmonar/complicações , Lesão Pulmonar/etiologia , Síndrome do Desconforto Respiratório/etiologia , Vaping/efeitos adversos , Biomarcadores , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Humanos , Lesão Pulmonar/patologia , Estresse Oxidativo , Síndrome do Desconforto Respiratório/patologia
4.
Cardiovasc Res ; 117(1): 201-211, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32176281

RESUMO

AIMS: Telomere attrition in cardiomyocytes is associated with decreased contractility, cellular senescence, and up-regulation of proapoptotic transcription factors. Pim1 is a cardioprotective kinase that antagonizes the aging phenotype of cardiomyocytes and delays cellular senescence by maintaining telomere length, but the mechanism remains unknown. Another pathway responsible for regulating telomere length is the transforming growth factor beta (TGFß) signalling pathway where inhibiting TGFß signalling maintains telomere length. The relationship between Pim1 and TGFß has not been explored. This study delineates the mechanism of telomere length regulation by the interplay between Pim1 and components of TGFß signalling pathways in proliferating A549 cells and post-mitotic cardiomyocytes. METHODS AND RESULTS: Telomere length was maintained by lentiviral-mediated overexpression of PIM1 and inhibition of TGFß signalling in A549 cells. Telomere length maintenance was further demonstrated in isolated cardiomyocytes from mice with cardiac-specific overexpression of PIM1 and by pharmacological inhibition of TGFß signalling. Mechanistically, Pim1 inhibited phosphorylation of Smad2, preventing its translocation into the nucleus and repressing expression of TGFß pathway genes. CONCLUSION: Pim1 maintains telomere lengths in cardiomyocytes by inhibiting phosphorylation of the TGFß pathway downstream effectors Smad2 and Smad3, which prevents repression of telomerase reverse transcriptase. Findings from this study demonstrate a novel mechanism of telomere length maintenance and provide a potential target for preserving cardiac function.


Assuntos
Senescência Celular/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Homeostase do Telômero/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Células A549 , Animais , Humanos , Masculino , Camundongos Knockout , Miócitos Cardíacos/enzimologia , Fosforilação , Proteínas Proto-Oncogênicas c-pim-1/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Telomerase/metabolismo
5.
Cells ; 9(9)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878131

RESUMO

Enhancing cardiomyocyte survival is crucial to blunt deterioration of myocardial structure and function following pathological damage. PIM1 (Proviral Insertion site in Murine leukemia virus (PIM) kinase 1) is a cardioprotective serine threonine kinase that promotes cardiomyocyte survival and antagonizes senescence through multiple concurrent molecular signaling cascades. In hematopoietic stem cells, PIM1 interacts with the receptor tyrosine kinase c-Kit upstream of the ERK (Extracellular signal-Regulated Kinase) and Akt signaling pathways involved in cell proliferation and survival. The relationship between PIM1 and c-Kit activity has not been explored in the myocardial context. This study delineates the interaction between PIM1 and c-Kit leading to enhanced protection of cardiomyocytes from stress. Elevated c-Kit expression is induced in isolated cardiomyocytes from mice with cardiac-specific overexpression of PIM1. Co-immunoprecipitation and proximity ligation assay reveal protein-protein interaction between PIM1 and c-Kit. Following treatment with Stem Cell Factor, PIM1-overexpressing cardiomyocytes display elevated ERK activity consistent with c-Kit receptor activation. Functionally, elevated c-Kit expression confers enhanced protection against oxidative stress in vitro. This study identifies the mechanistic relationship between PIM1 and c-Kit in cardiomyocytes, demonstrating another facet of cardioprotection regulated by PIM1 kinase.


Assuntos
Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Animais , Humanos , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-pim-1/biossíntese , Proteínas Proto-Oncogênicas c-pim-1/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA