Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Physiol ; 81: 43-62, 2019 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-30354932

RESUMO

In the nervous system, ATP is co-stored in vesicles with classical transmitters and released in a regulated manner. ATP from the intracellular compartment can also exit the cell through hemichannels and following shear stress or membrane damage. In the past 30 years, the action of ATP as an extracellular transmitter at cell-surface receptors has evolved from somewhat of a novelty that was treated with skepticism to purinergic transmission being accepted as having widespread important functional roles mediated by ATP-gated ionotropic P2X receptors (P2XRs). This review focuses on work published in the last five years and provides an overview of ( a) structural studies, ( b) the molecular basis of channel properties and regulation of P2XRs, and ( c) the physiological and pathophysiological roles of ATP acting at defined P2XR subtypes.


Assuntos
Trifosfato de Adenosina/metabolismo , Canais Iônicos/metabolismo , Receptores Purinérgicos P2X/metabolismo , Animais , Humanos
2.
Biochem Biophys Res Commun ; 523(1): 190-195, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-31843194

RESUMO

P2X receptors are trimeric ATP-gated ion channels. In response to ATP binding, conformational changes lead to opening of the channel and ion flow. Current flow can decline during continued ATP binding in a process called desensitisation. The rate and extent of desensitisation is affected by multiple factors, for instance the T18A mutation in P2X2 makes the ion channel fast desensitising. We have used this mutation to investigate whether the gate restricting ion flow is different in the desensitised and the closed state, by combining molecular modelling and cysteine modification using MTSET (2-(Trimethylammonium)ethyl methanethiosulfonate). Homology modelling of the P2X2 receptor and negative space imaging of the channel suggested a movement of the restriction gate with residue T335 being solvent accessible in the desensitised, but not the closed state. This was confirmed experimentally by probing the accessibility of T335C in the P2X2 T18A/T335C (fast desensitisation) and T335C (slow desensitisation) mutants with MTSET which demonstrates that the barrier to ion flow is different in the closed and the desensitised states. To investigate the T18A induced switch in desensitisation we compared molecular dynamics simulations of the wild type and T18A P2X2 receptor which suggest that the differences in time course of desensitisation are due to structural destabilization of a hydrogen bond network of conserved residues in the proximity of T18.


Assuntos
Trifosfato de Adenosina/metabolismo , Receptores Purinérgicos P2X2/química , Receptores Purinérgicos P2X2/metabolismo , Humanos , Modelos Moleculares , Mutação , Receptores Purinérgicos P2X2/genética
3.
Mol Pharmacol ; 96(3): 355-363, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31263019

RESUMO

The P2X7 receptor is a trimeric ligand-gated ion channel activated by ATP. It is implicated in the cellular response to trauma/disease and considered to have significant therapeutic potential. Using chimeras and point mutants we have mapped the binding site of the P2X7R-selective antagonist AZ11645373 to the known allosteric binding pocket at the interface between two subunits, in proximity to, but separated from the ATP binding site. Our structural model of AZ11645373 binding is consistent with effects of mutations on antagonist sensitivity, and the proposed binding mode explains variation in antagonist sensitivity between the human and rat P2X7 receptors. We have also determined the site of action for the P2X7R-selective antagonists ZINC58368839, brilliant blue G, KN-62, and calmidazolium. The effect of intersubunit allosteric pocket "signature mutants" F88A, T90V, D92A, F103A, and V312A on antagonist sensitivity suggests that ZINC58368839 comprises a binding mode similar to AZ11645373 and other previously characterized antagonists. For the larger antagonists, brilliant blue G, KN-62, and calmidazolium, our data imply an overlapping but distinct binding mode involving the central upper vestibule of the receptor in addition to the intersubunit allosteric pocket. Our work explains the site of action for a series of P2X7R antagonists and establishes "signature mutants" for P2X7R binding-mode characterization.


Assuntos
Mutação Puntual , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7/química , Receptores Purinérgicos P2X7/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/química , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Trifosfato de Adenosina/metabolismo , Sítio Alostérico , Amidas/química , Amidas/farmacologia , Sítios de Ligação , Humanos , Imidazóis/química , Imidazóis/farmacologia , Indóis/química , Indóis/farmacologia , Modelos Moleculares , Simulação de Acoplamento Molecular , Antagonistas do Receptor Purinérgico P2X/química , Receptores Purinérgicos P2X7/genética , Corantes de Rosanilina/química , Corantes de Rosanilina/farmacologia , Tiazóis/química , Tiazóis/farmacologia
4.
J Biol Chem ; 293(33): 12820-12831, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29997254

RESUMO

ATP is the native agonist for cell-surface ligand-gated P2X receptor (P2XR) cation channels. The seven mammalian subunits (P2X1-7) form homo- and heterotrimeric P2XRs having significant physiological and pathophysiological roles. Pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) is an effective antagonist at most mammalian P2XRs. Lys-249 in the extracellular domain of P2XR has previously been shown to contribute to PPADS action. To map this antagonist site, we generated human P2X1R cysteine substitutions within a circle centered at Lys-249 (with a radius of 13 Å equal to the length of PPADS). We hypothesized that cysteine substitutions of residues involved in PPADS binding would (i) reduce cysteine accessibility (measured by MTSEA-biotinylation), (ii) exhibit altered PPADS affinity, and (iii) quench the fluorescence of cysteine residues modified with MTS-TAMRA. Of the 26 residues tested, these criteria were met by only four (Lys-70, Asp-170, Lys-190, and Lys-249), defining the antagonist site, validating molecular docking results, and thereby providing the first experimentally supported model of PPADS binding. This binding site overlapped with the ATP-binding site, indicating that PPADS sterically blocks agonist access. Moreover, PPADS induced a conformational change at the cysteine-rich head (CRH) region adjacent to the orthosteric ATP-binding pocket. The importance of this movement was confirmed by demonstrating that substitution introducing positive charge present in the CRH of the hP2X1R causes PPADS sensitivity at the normally insensitive rat P2X4R. This study provides a template for developing P2XR subtype selectivity based on the differences among the mammalian subunits around the orthosteric P2XR-binding site and the CRH.


Assuntos
Modelos Moleculares , Antagonistas do Receptor Purinérgico P2X/química , Fosfato de Piridoxal/análogos & derivados , Receptores Purinérgicos P2X1/química , Animais , Sítios de Ligação , Humanos , Fosfato de Piridoxal/química , Ratos , Receptores Purinérgicos P2X1/genética , Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/genética , Xenopus laevis
5.
Purinergic Signal ; 15(3): 397-402, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31286385

RESUMO

A P2X1-eYFP knock-in mouse was generated to study receptor expression and mobility in smooth muscle and blood cells. eYFP was added to the C-terminus of the P2X1R and replaced the native P2X1R. Fluorescence corresponding to P2X1-eYFPR was detected in urinary bladder smooth muscle, platelets and megakaryocytes. ATP-evoked currents from wild type and P2X1-eYFP isolated urinary bladder smooth muscle cells had the same peak current amplitude and time-course showing that the eYFP addition had no obvious effect on properties. Fluorescence recovery after photobleaching (FRAP) in bladder smooth muscle cells demonstrated that surface P2X1Rs are mobile and their movement is reduced following cholesterol depletion. Compared to the platelet and megakaryocyte, P2X1-eYFP fluorescence was negligible in red blood cells and the majority of smaller marrow cells. The spatial pattern of P2X1-eYFP fluorescence in the megakaryocyte along with FRAP assessment of mobility suggested that P2X1Rs are expressed extensively throughout the membrane invagination system of this cell type. The current study highlights that the spatiotemporal properties of P2X1R expression can be monitored in real time in smooth muscle cells and megakaryocytes/platelets using the eYFP knock-in mouse model.


Assuntos
Técnicas de Introdução de Genes/métodos , Receptores Purinérgicos P2X1/análise , Receptores Purinérgicos P2X1/metabolismo , Animais , Proteínas de Bactérias , Proteínas Luminescentes , Camundongos , Modelos Animais
6.
Mol Pharmacol ; 93(5): 553-562, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29535152

RESUMO

P2X7 receptor (P2X7R) activation requires ∼100-fold higher concentrations of ATP than other P2X receptor (P2XR) subtypes. Such high levels are found during cellular stress, and P2X7Rs consequently contribute to a range of pathophysiological conditions. We have used chimeric and mutant P2X7Rs, coupled with molecular modeling, to produce a validated model of the binding mode of the subtype-selective antagonist A438079 at an intersubunit allosteric site. Within the allosteric site large effects on antagonist action were found for point mutants of residues F88A, D92A, F95A, and F103A that were conserved or similar between sensitive/insensitive P2XR subtypes, suggesting that these side-chain interactions were not solely responsible for high-affinity antagonist binding. Antagonist sensitivity was increased with mutations that remove the bulk of side chains around the center of the binding pocket, suggesting that the dimensions of the pocket make a significant contribution to selectivity. Chimeric receptors swapping the left flipper (around the orthosteric site) reduced both ATP and antagonist sensitivity. Point mutations within this region highlighted the contribution of a P2X7R-specific aspartic acid residue (D280) that modeling suggests forms a salt bridge with the lower body region of the receptor. The D280A mutant removing this charge increased ATP potency 15-fold providing a new insight into the low ATP sensitivity of the P2X7R. The ortho- and allosteric binding sites form either side of the ß-strand Y291-E301 adjacent to the left flipper. This structural linking may explain the contribution of the left flipper to both agonist and antagonist action.


Assuntos
Acetamidas/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Piridinas/farmacologia , Quinolinas/farmacologia , Receptores Purinérgicos P2X7/efeitos dos fármacos , Tetrazóis/farmacologia , Regulação Alostérica , Sítio Alostérico , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Ligantes , Simulação de Acoplamento Molecular , Mutação Puntual , Receptores Purinérgicos P2X7/química , Receptores Purinérgicos P2X7/genética , Homologia de Sequência de Aminoácidos
7.
J Immunol ; 194(2): 739-49, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25480563

RESUMO

Extracellular ATP is becoming increasingly recognized as an important regulator of inflammation. However, the known repertoire of P2 receptor subtypes responsible for the proinflammatory effects of ATP is sparse. We looked at whether the P2X1 receptor, an ATP-gated cation channel present on platelets, neutrophils, and macrophages, participates in the acute systemic inflammation provoked by LPS. Compared with wild-type (WT) mice, P2X1(-/-) mice displayed strongly diminished pathological responses, with dampened neutrophil accumulation in the lungs, less tissue damage, reduced activation of coagulation, and resistance to LPS-induced death. P2X1 receptor deficiency also was associated with a marked reduction in plasma levels of the main proinflammatory cytokines and chemokines induced by LPS. Interestingly, macrophages and neutrophils isolated from WT and P2X1(-/-) mice produced similar levels of proinflammatory cytokines when stimulated with LPS in vitro. Intravital microscopy revealed a defect in LPS-induced neutrophil emigration from cremaster venules into the tissues of P2X1(-/-) mice. Using adoptive transfer of immunofluorescently labeled neutrophils from WT and P2X1(-/-) mice into WT mice, we demonstrate that the absence of the P2X1 receptor on neutrophils was responsible for this defect. This study reveals a major role for the P2X1 receptor in LPS-induced lethal endotoxemia through its critical involvement in neutrophil emigration from venules.


Assuntos
Endotoxemia/imunologia , Lipopolissacarídeos/toxicidade , Pulmão/imunologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Receptores Purinérgicos P2X1/imunologia , Animais , Coagulação Sanguínea/efeitos dos fármacos , Coagulação Sanguínea/genética , Coagulação Sanguínea/imunologia , Endotoxemia/induzido quimicamente , Endotoxemia/genética , Endotoxemia/patologia , Pulmão/patologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos/efeitos dos fármacos , Infiltração de Neutrófilos/genética , Neutrófilos/patologia , Receptores Purinérgicos P2X1/genética
8.
J Biol Chem ; 290(23): 14556-66, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25903136

RESUMO

P2X7 receptors are ATP-gated ion channels that contribute to inflammation and cell death. They have the novel property of showing marked facilitation to repeated applications of agonist, and the intrinsic channel pore dilates to allow the passage of fluorescent dyes. A 60-s application of ATP to hP2X7 receptors expressed in Xenopus oocytes gave rise to a current that had a biphasic time course with initial and secondary slowly developing components. A second application of ATP evoked a response with a more rapid time to peak. This facilitation was reversed to initial levels following a 10-min agonist-free interval. A chimeric approach showed that replacement of the pre-TM1 amino-terminal region with the corresponding P2X2 receptor section (P2X7-2Nß) gave responses that quickly reached a steady state and did not show facilitation. Subsequent point mutations of variant residues identified Asn-16 and Ser-23 as important contributors to the time course/facilitation. The P2X7 receptor is unique in having an intracellular carboxyl-terminal cysteine-rich region (Ccys). Deletion of this region removed the secondary slowly developing current, and, when expressed in HEK293 cells, ethidium bromide uptake was only ∼5% that of WT levels, indicating reduced large pore formation. Dye uptake was also reduced for the P2X7-2Nß chimera. Surprisingly, combination of the chimera and the Ccys deletion (P2X7-2NßdelCcys) restored the current rise time and ethidium uptake to WT levels. These findings suggest that there is a coevolved interaction between the juxtatransmembrane amino and carboxyl termini in the regulation of P2X7 receptor gating.


Assuntos
Trifosfato de Adenosina/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animais , Células HEK293 , Humanos , Mutagênese , Receptores Purinérgicos P2X7/química , Receptores Purinérgicos P2X7/genética , Xenopus laevis
9.
J Biol Chem ; 290(3): 1559-69, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25425641

RESUMO

P2X receptor subtype-selective antagonists are promising candidates for treatment of a range of pathophysiological conditions. However, in contrast to high resolution structural understanding of agonist action in the receptors, comparatively little is known about the molecular basis of antagonist binding. We have generated chimeras and point mutations in the extracellular ligand-binding loop of the human P2X1 receptor, which is inhibited by NF449, suramin, and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate, with residues from the rat P2X4 receptor, which is insensitive to these antagonists. There was little or no effect on sensitivity to suramin and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate in chimeric P2X1/4 receptors, indicating that a significant number of residues required for binding of these antagonists are present in the P2X4 receptor. Sensitivity to the P2X1 receptor-selective antagonist NF449 was reduced by ∼60- and ∼135-fold in chimeras replacing the cysteine-rich head, and the dorsal fin region below it in the adjacent subunit, respectively. Point mutants identified the importance of four positively charged residues at the base of the cysteine-rich head and two variant residues in the dorsal fin for high affinity NF449 binding. These six residues were used as the starting area for molecular docking. The four best potential NF449-binding poses were then discriminated by correspondence with the mutagenesis data and an additional mutant to validate the binding of one lobe of NF449 within the core conserved ATP-binding pocket and the other lobes coordinated by positive charge on the cysteine-rich head region and residues in the adjacent dorsal fin.


Assuntos
Trifosfato de Adenosina/química , Benzenossulfonatos/química , Mutação Puntual , Antagonistas do Receptor Purinérgico P2X/química , Animais , Sítios de Ligação , Cisteína/química , Desenho de Fármacos , Humanos , Ligantes , Lisina/química , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Oócitos/metabolismo , Ligação Proteica , Ratos , Suramina/química , Xenopus laevis
10.
Blood ; 124(16): 2575-85, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25150292

RESUMO

Adenosine triphosphate (ATP) and its metabolite, adenosine, are key regulators of polymorphonuclear neutrophil (PMN) functions. PMNs have recently been implicated in the initiation of thrombosis. We investigated the role of ATP and adenosine in PMN activation and recruitment at the site of endothelial injury. Following binding to the injured vessel wall, PMNs are activated and release elastase. The recruitment of PMNs and the subsequent fibrin generation and thrombus formation are strongly affected in mice deficient in the P2X1-ATP receptor and in wild-type (WT) mice treated with CGS 21680, an agonist of the A2A adenosine receptor or NF449, a P2X1 antagonist. Infusion of WT PMNs into P2X1-deficient mice increases fibrin generation but not thrombus formation. Restoration of thrombosis requires infusion of both platelets and PMNs from WT mice. In vitro, ATP activates PMNs, whereas CGS 21680 prevents their binding to activated endothelial cells. These data indicate that adenosine triphosphate (ATP) contributes to polymorphonuclear neutrophil (PMN) activation leading to their adhesion at the site of laser-induced endothelial injury, a necessary step leading to the generation of fibrin, and subsequent platelet-dependent thrombus formation. Altogether, our study identifies previously unknown mechanisms by which ATP and adenosine are key molecules involved in thrombosis by regulating the activation state of PMNs.


Assuntos
Plaquetas/metabolismo , Neutrófilos/metabolismo , Receptores Purinérgicos P2X1/genética , Trombose/genética , Animais , Plaquetas/patologia , Fibrina/metabolismo , Deleção de Genes , Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/patologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X1/metabolismo , Trombose/metabolismo , Trombose/patologia
11.
Adv Exp Med Biol ; 898: 305-29, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27161234

RESUMO

Ligand-gated ion channels on the cell surface are directly activated by the binding of an agonist to their extracellular domain and often referred to as ionotropic receptors. P2X receptors are ligand-gated non-selective cation channels with significant permeability to Ca(2+) whose principal physiological agonist is ATP. This chapter focuses on the mechanisms by which P2X1 receptors, a ubiquitously expressed member of the family of ATP-gated channels, can contribute to cellular responses in non-excitable cells. Much of the detailed information on the contribution of P2X1 to Ca(2+) signalling and downstream functional events has been derived from the platelet. The underlying primary P2X1-generated signalling event in non-excitable cells is principally due to Ca(2+) influx, although Na(+) entry will also occur along with membrane depolarization. P2X1 receptor stimulation can lead to additional Ca(2+) mobilization via a range of routes such as amplification of G-protein-coupled receptor-dependent Ca(2+) responses. This chapter also considers the mechanism by which cells generate extracellular ATP for autocrine or paracrine activation of P2X1 receptors. For example cytosolic ATP efflux can result from opening of pannexin anion-permeable channels or following damage to the cell membrane. Alternatively, ATP stored in specialised secretory vesicles can undergo quantal release via the process of exocytosis. Examples of physiological or pathophysiological roles of P2X1-dependent signalling in non-excitable cells are also discussed, such as thrombosis and immune responses.


Assuntos
Plaquetas/metabolismo , Sinalização do Cálcio , Ativação do Canal Iônico , Canais Iônicos/metabolismo , Receptores Purinérgicos P2X1/metabolismo , Animais , Citosol/metabolismo , Humanos , Canais Iônicos/química , Ligantes , Conformação Proteica , Receptores Purinérgicos P2X1/química
12.
Proc Natl Acad Sci U S A ; 110(51): 20825-30, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24297884

RESUMO

Therapeutic targets for male contraception are associated with numerous problems due to their focus on disrupting spermatogenesis or hormonal mechanisms to produce dysfunctional sperm. Here we describe the dual genetic deletion of α1A-adrenergic G protein-coupled receptors (adrenoceptors) and P2X1-purinoceptor ligand gated ion channels in male mice, thereby blocking sympathetically mediated sperm transport through the vas deferens during the emission phase of ejaculation. This modification produced 100% infertility without effects on sexual behavior or function. Sperm taken from the cauda epididymides of double knockout mice were microscopically normal and motile. Furthermore, double knockout sperm were capable of producing normal offspring following intracytoplasmic sperm injection into wild-type ova and implantation of the fertilized eggs into foster mothers. Blood pressure and baroreflex function was reduced in double knockout mice, but no more than single knockout of α1A-adrenoceptors alone. These results suggest that this autonomic method of male contraception appears free of major physiological and behavioral side effects. In addition, they provide conclusive proof of concept that pharmacological antagonism of the P2X1-purinoceptor and α1A-adrenoceptor provides a safe and effective therapeutic target for a nonhormonal, readily reversible male contraceptive.


Assuntos
Anticoncepção , Infertilidade Masculina/genética , Receptores Adrenérgicos alfa 1 , Receptores Purinérgicos P2X1 , Espermatozoides/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Barorreflexo , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Camundongos Knockout , Antagonistas do Receptor Purinérgico P2X/farmacologia , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/citologia
13.
Neurourol Urodyn ; 34(3): 292-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24249481

RESUMO

AIMS: An age-related increase in prostatic smooth muscle tone is partly responsible for the lower urinary tract symptoms associated with benign prostatic hyperplasia (BPH). Changes in the effectors of prostatic smooth muscle contraction with age may play a role in the development of these symptoms. Using a mouse model of prostate contractility, this study investigated the effect of age on the different components of contractility in the prostate gland. METHODS: The isometric force developed in response to electrical field stimulation or exogenously applied agonists by mouse prostates mounted in organ baths, was evaluated to determine the effect of age on contractile mechanisms. Changes with age in the rate of ATP breakdown and levels of the P2rx1 gene and P2X1-purinoceptor expression in mouse prostate were measured by a modified luciferin-luciferase assay, RT-PCR and western blot, respectively. RESULTS: Nerve mediated contractile responses containing a component elicited by P2X1-purinoceptors were observed in prostates taken from aged mice, but not in prostates taken from young adult mice. Furthermore, the potency of the endogenous purinoceptor agonist ATP was 50-fold greater in aged mice, whereas the potency of its stable analogue α,ß-metATP was unchanged. An age-related decrease in ATP metabolism was also observed. CONCLUSIONS: With age, a purinergic contractile response to nerve stimulation develops in the mouse prostate gland due to a decrease in the rate of ATP breakdown. This may contribute to the increase in muscular tone observed in BPH and suggests that P2X1-purinoceptors are an additional target for the treatment of BPH.


Assuntos
Trifosfato de Adenosina/metabolismo , Contração Muscular , Próstata/fisiologia , Receptores Purinérgicos P2X1/fisiologia , Fatores Etários , Animais , Masculino , Camundongos , Próstata/metabolismo , Fatores de Tempo
14.
Proc Natl Acad Sci U S A ; 109(12): 4663-7, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22393010

RESUMO

P2X receptors for ATP have a wide range of physiological roles and comprise a structurally distinct family of ligand-gated trimeric ion channels. The crystal structure of a P2X4 receptor, in combination with mutagenesis studies, has provided a model of the intersubunit ATP-binding sites and identified an extracellular lateral portal, adjacent to the membrane, that funnels ions to the channel pore. However, little is known about the extent of ATP-induced conformational changes in the extracellular domain of the receptor. To address this issue, we have used MTSEA-biotinylation (N-Biotinoylaminoethyl methanethiosulfonate) to show ATP-sensitive accessibility of cysteine mutants at the human P2X1 receptor. Mapping these data to a P2X1 receptor homology model identifies significant conformational rearrangement. Electron microscopy of purified P2X1 receptors showed marked changes in structure on ATP binding, and introducing disulphide bonds between adjacent subunits to restrict intersubunit movements inhibited channel function. These results are consistent with agonist-induced rotation of the propeller-head domain of the receptor, sliding of adjacent subunits leading to restricted access to the upper vestibule, movement in the ion conducting lateral portals, and gating of the channel pore.


Assuntos
Receptores Purinérgicos P2X1/química , Trifosfato de Adenosina/química , Animais , Sítios de Ligação , Biotinilação , Dissulfetos/química , Humanos , Íons/química , Microscopia Eletrônica/métodos , Conformação Molecular , Mutagênese , Oócitos/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Xenopus
15.
Mol Pharmacol ; 86(6): 707-15, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25296688

RESUMO

ATP acts as an extracellular signaling molecule at cell-surface P2X receptors, mediating a variety of important physiologic and pathophysiologic roles. Homomeric P2X1 receptors open on binding ATP and then transition to an ATP-bound closed, desensitized state that requires an agonist-free washout period to recover. Voltage-clamp fluorometry was used to record ion channel activity and conformational changes simultaneously at defined positions in the extracellular loop of the human P2X1 receptor during not only agonist binding and desensitization but also during recovery. ATP evoked distinct conformational changes adjacent to the agonist binding pocket in response to channel activation and desensitization. The speed of recovery of the conformational change on agonist washout was state-dependent, with a faster time constant from the open (5 seconds) compared with the desensitized (75 seconds) form of the channel. The ability of ATP to evoke channel activity on washout after desensitization was not dependent on the degree of conformational rearrangement in the extracellular loop, and desensitization was faster from the partially recovered state. An intracellular mutation in the carboxyl terminus that slowed recovery of P2X1 receptor currents (7-fold less recovery at 30 seconds) had no effect on the time course of the extracellular conformational rearrangements. This study highlights that the intracellular portion of the receptor can regulate recovery and shows for the first time that this is by a mechanism independent of changes in the extracellular domain, suggesting the existence of a distinct desensitization gate in this novel class of ligand gated ion channels.


Assuntos
Trifosfato de Adenosina/farmacologia , Receptores Purinérgicos P2X1/química , Fluorometria , Cinética , Técnicas de Patch-Clamp , Conformação Proteica , Receptores Purinérgicos P2X1/fisiologia
16.
Mol Pharmacol ; 86(3): 243-51, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24923466

RESUMO

Many cells express both P2X cation channels and P2Y G-protein-coupled receptors that are costimulated by nucleotides released during physiologic or pathophysiologic responses. For example, during hemostasis and thrombosis, ATP-gated P2X1 channels and ADP-stimulated P2Y1 and P2Y12 G-protein coupled receptors play important roles in platelet activation. It has previously been reported that P2X1 receptors amplify P2Y1-evoked Ca(2+) responses in platelets, but the underlying mechanism and influence on function is unknown. In human platelets, we show that maximally activated P2X1 receptors failed to stimulate significant aggregation but could amplify the aggregation response to a submaximal concentration of ADP. Costimulation of P2X1 and P2Y1 receptors generated a superadditive Ca(2+) increase in both human platelets and human embryonic kidney 293 (HEK293) cells via a mechanism dependent on Ca(2+) influx rather than Na(+) influx or membrane depolarization. The potentiation, due to an enhanced P2Y1 response, was observed if ADP was added up to 60 seconds after P2X1 activation. P2X1 receptors also enhanced Ca(2+) responses when costimulated with type 1 protease activated and M1 muscarinic acetylcholine receptors. The P2X1-dependent amplification of Gq-coupled [Ca(2+)]i increase was mimicked by ionomycin and was not affected by inhibition of protein kinase C, Rho-kinase, or extracellular signal-regulated protein kinase 1/2, which suggests that it results from potentiation of inositol 1,4,5-trisphosphate receptors and/or phospholipase C. We conclude that Ca(2+) influx through P2X1 receptors amplifies Ca(2+) signaling through P2Y1 and other Gq-coupled receptors. This represents a general form of co-incidence detection of ATP and coreleased agonists, such as ADP at sites of vascular injury or synaptic transmitters acting at metabotropic Gq-coupled receptors.


Assuntos
Difosfato de Adenosina/metabolismo , Plaquetas/metabolismo , Cálcio/metabolismo , Agregação Plaquetária , Receptores Purinérgicos P2X1/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Sinalização do Cálcio , Células HEK293 , Humanos , Técnicas In Vitro , Proteínas Recombinantes/metabolismo
17.
J Biol Chem ; 288(29): 21412-21421, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23740251

RESUMO

P2X receptor subtypes can be distinguished by their sensitivity to ATP analogues and selective antagonists. We have used chimeras between human P2X1 and P2X2 receptors to address the contribution of the extracellular ligand binding loop, transmembrane segments (TM1 and TM2), and intracellular amino and carboxyl termini to the action of partial agonists (higher potency and efficacy of BzATP and Ap5A at P2X1 receptors) and antagonists. Sensitivity to the antagonists NF449, suramin, and PPADS was conferred by the nature of the extracellular loop (e.g. nanomolar for NF449 at P2X1 and P2X2-1EXT and micromolar at P2X2 and P2X1-2EXT). In contrast, the effectiveness of partial agonists was similar to P2X1 levels for both of the loop transfers, suggesting that interactions with the rest of the receptor played an important role. Swapping TM2 had reciprocal effects on partial agonist efficacy. However, TM1 swaps increased partial agonist efficacy at both chimeras, and this was similar for swaps of both TM1 and 2. Changing the amino terminus had no effect on agonist potency but increased partial agonist efficacy at P2X2-1N and decreased it at P2X1-2N chimeras, demonstrating that potency and efficacy can be independently regulated. Chimeras and point mutations also identified residues in the carboxyl terminus that regulated recovery from channel desensitization. These results show that interactions among the intracellular, transmembrane, and extracellular portions of the receptor regulate channel properties and suggest that transitions to channel opening, the behavior of the open channel, and recovery from the desensitized state can be controlled independently.


Assuntos
Ativação do Canal Iônico/efeitos dos fármacos , Agonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X1/química , Receptores Purinérgicos P2X1/metabolismo , Receptores Purinérgicos P2X2/química , Receptores Purinérgicos P2X2/metabolismo , Proteínas Recombinantes/química , Trifosfato de Adenosina/farmacologia , Animais , Espaço Extracelular/química , Humanos , Espaço Intracelular/química , Modelos Biológicos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Antagonistas do Receptor Purinérgico P2X , Fosfato de Piridoxal/farmacologia , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Fatores de Tempo , Xenopus laevis
18.
J Biol Chem ; 287(39): 32747-54, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22851178

RESUMO

We have used selective inhibitors to determine whether the molecular chaperone heat shock protein 90 (HSP90) has an effect on both recombinant and native human P2X1 receptors. P2X1 receptor currents in HEK293 cells were reduced by ∼70-85% by the selective HSP90 inhibitor geldanamycin (2 µM, 20 min). This was associated with a speeding in the time course of desensitization as well as a reduction in cell surface expression. Imaging in real time of photoactivatable GFP-tagged P2X receptors showed that they are highly mobile. Geldanamycin almost abolished this movement for P2X1 receptors but had no effect on P2X2 receptor trafficking. P2X1/2 receptor chimeras showed that the intracellular N and C termini were involved in geldanamycin sensitivity. Geldanamycin also inhibited native P2X1 receptor-mediated responses. Platelet P2X1 receptors play an important role in hemostasis, contribute to amplification of signaling to a range of stimuli including collagen, and are novel targets for antithrombotic therapies. Platelet P2X1 receptor-, but not P2Y1 receptor-, mediated increases in intracellular calcium were reduced by 40-45% following HSP90 inhibition with geldanamycin or radicicol. Collagen stimulation leads to ATP release from platelets, and calcium increases to low doses of collagen were also reduced by ∼40% by the HSP90 inhibitors consistent with an effect on P2X1 receptors. These studies suggest that HSP90 inhibitors may be as effective as selective antagonists in regulating platelet P2X1 receptors, and their potential effects on hemostasis should be considered in clinical studies.


Assuntos
Benzoquinonas/farmacologia , Plaquetas/metabolismo , Inibidores Enzimáticos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Lactamas Macrocíclicas/farmacologia , Receptores Purinérgicos P2X1/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Plaquetas/citologia , Colágeno/genética , Colágeno/metabolismo , Colágeno/farmacologia , Feminino , Células HEK293 , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Hemostasia/efeitos dos fármacos , Humanos , Masculino , Transporte Proteico/efeitos dos fármacos , Receptores Purinérgicos P2X1/genética , Receptores Purinérgicos P2Y1/genética , Receptores Purinérgicos P2Y1/metabolismo
19.
J Biol Chem ; 286(35): 30591-30599, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21757694

RESUMO

P2X1 receptors are ATP-gated ion channels expressed by smooth muscle and blood cells. Carboxyl-terminally His-FLAG-tagged human P2X1 receptors were stably expressed in HEK293 cells and co-purified with cytoskeletal proteins including actin. Disruption of the actin cytoskeleton with cytochalasin D inhibited P2X1 receptor currents with no effect on the time course of the response or surface expression of the receptor. Stabilization of the cytoskeleton with jasplakinolide had no effect on P2X1 receptor currents but decreased receptor mobility. P2X2 receptor currents were unaffected by cytochalasin, and P2X1/2 receptor chimeras were used to identify the molecular basis of actin sensitivity. These studies showed that the intracellular amino terminus accounts for the inhibitory effects of cytoskeletal disruption similar to that shown for lipid raft/cholesterol sensitivity. Stabilization of the cytoskeleton with jasplakinolide abolished the inhibitory effects of cholesterol depletion on P2X1 receptor currents, suggesting that lipid rafts may regulate the receptor through stabilization of the cytoskeleton. These studies show that the cytoskeleton plays an important role in P2X1 receptor regulation.


Assuntos
Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Receptores Purinérgicos P2X1/metabolismo , Actinas/química , Trifosfato de Adenosina/química , Animais , Citocalasina D/metabolismo , Depsipeptídeos/farmacologia , Eletrofisiologia/métodos , Células HEK293 , Humanos , Microdomínios da Membrana/química , Microscopia Confocal/métodos , Modelos Biológicos , Miócitos de Músculo Liso/citologia , Proteína Quinase C/metabolismo , Estrutura Terciária de Proteína , Ratos
20.
J Biol Chem ; 286(52): 44691-701, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22027824

RESUMO

P2X receptors show marked variations in the time-course of response to ATP application from rapidly desensitizing P2X1 receptors to relatively sustained P2X2 receptors. In this study we have used chimeras between human P2X1 and P2X2 receptors in combination with mutagenesis to address the contribution of the extracellular ligand binding loop, the transmembrane channel, and the intracellular regions to receptor time-course. Swapping either the extracellular loop or both transmembrane domains (TM1 and -2) between the P2X1 and P2X2 receptors had no effect on the time-course of ATP currents in the recipient receptor. These results suggest that the agonist binding and channel-forming portions of the receptor do not play a major role in the control of the time-course. In contrast replacing the amino terminus of the P2X1 receptor with that from the non-desensitizing P2X2 receptor (P2X1-2N) slowed desensitization, and the mirror chimera induced rapid desensitization in the P2X2-1N chimera. These reciprocal effects on time-course can be replicated by changing four variant amino acids just before the first transmembrane (TM1) segment. These pre-TM1 residues also had a dominant effect on chimeras where both TMs had been transferred; mutating the variant amino acids 21-23 to those found in the P2X2 receptor removed desensitization from the P2X1-2TM1/-2 chimera, and the reciprocal mutants induced rapid desensitization in the non-desensitizing P2X2-1TM1/-2 chimera. These results suggest that the intracellular amino terminus, in particular the region just before TM1, plays a dominant role in the regulation of the time-course of ATP evoked P2X receptor currents.


Assuntos
Receptores Purinérgicos P2X1/metabolismo , Receptores Purinérgicos P2X2/metabolismo , Animais , Humanos , Transporte de Íons/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores Purinérgicos P2X1/genética , Receptores Purinérgicos P2X2/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA