Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Med Genet ; 59(5): 438-444, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33910932

RESUMO

BACKGROUND: Inherited retinal diseases (IRDs) can be caused by variants in >270 genes. The Bardet-Biedl syndrome 1 (BBS1) gene is one of these genes and may be associated with syndromic and non-syndromic autosomal recessive retinitis pigmentosa (RP). Here, we identified a branchpoint variant in BBS1 and assessed its pathogenicity by in vitro functional analysis. METHODS: Whole genome sequencing was performed for three unrelated monoallelic BBS1 cases with non-syndromic RP. A fourth case received MGCM 105 gene panel analysis. Functional analysis using a midigene splice assay was performed for the putative pathogenic branchpoint variant in BBS1. After confirmation of its pathogenicity, patients were clinically re-evaluated, including assessment of non-ocular features of Bardet-Biedl syndrome. RESULTS: Clinical assessments of probands showed that all individuals displayed non-syndromic RP with macular involvement. Through detailed variant analysis and prioritisation, two pathogenic variants in BBS1, the most common missense variant, c.1169T>G (p.(Met390Arg)), and a branchpoint variant, c.592-21A>T, were identified. Segregation analysis confirmed that in all families, probands were compound heterozygous for c.1169T>G and c.592-21A>T. Functional analysis of the branchpoint variant revealed a complex splicing defect including exon 8 and exon 7/8 skipping, and partial in-frame deletion of exon 8. CONCLUSION: A putative severe branchpoint variant in BBS1, together with a mild missense variant, underlies non-syndromic RP in four unrelated individuals. To our knowledge, this is the first report of a pathogenic branchpoint variant in IRDs that results in a complex splice defect. In addition, this research highlights the importance of the analysis of non-coding regions in order to provide a conclusive molecular diagnosis.


Assuntos
Síndrome de Bardet-Biedl , Retinose Pigmentar , Síndrome de Bardet-Biedl/diagnóstico , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/patologia , Análise Mutacional de DNA , Humanos , Proteínas Associadas aos Microtúbulos/genética , Mutação/genética , Linhagem , Retina/patologia , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/genética , Retinose Pigmentar/patologia
2.
Int J Mol Sci ; 22(6)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799353

RESUMO

The identification of pathogenic variants in monogenic diseases has been of interest to researchers and clinicians for several decades. However, for inherited diseases with extremely high genetic heterogeneity, such as hearing loss and retinal dystrophies, establishing a molecular diagnosis requires an enormous effort. In this review, we use these two genetic conditions as examples to describe the initial molecular genetic identification approaches, as performed since the early 90s, and subsequent improvements and refinements introduced over the years. Next, the history of DNA sequencing from conventional Sanger sequencing to high-throughput massive parallel sequencing, a.k.a. next-generation sequencing, is outlined, including their advantages and limitations and their impact on identifying the remaining genetic defects. Moreover, the development of recent technologies, also coined "third-generation" sequencing, is reviewed, which holds the promise to overcome these limitations. Furthermore, we outline the importance and complexity of variant interpretation in clinical diagnostic settings concerning the massive number of different variants identified by these methods. Finally, we briefly mention the development of novel approaches such as optical mapping and multiomics, which can help to further identify genetic defects in the near future.


Assuntos
Proteínas do Olho/genética , Perda Auditiva/diagnóstico , Patologia Molecular , Distrofias Retinianas/diagnóstico , Heterogeneidade Genética , Perda Auditiva/genética , Perda Auditiva/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação/genética , Distrofias Retinianas/genética , Distrofias Retinianas/patologia
3.
Hum Mutat ; 40(12): 2365-2376, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31397521

RESUMO

Pathogenic variants in the ATP-binding cassette transporter A4 (ABCA4) gene cause a continuum of retinal disease phenotypes, including Stargardt disease. Noncanonical splice site (NCSS) and deep-intronic variants constitute a large fraction of disease-causing alleles, defining the functional consequences of which remains a challenge. We aimed to determine the effect on splicing of nine previously reported or unpublished NCSS variants, one near exon splice variant and nine deep-intronic variants in ABCA4, using in vitro splice assays in human embryonic kidney 293T cells. Reverse transcription-polymerase chain reaction and Sanger sequence analysis revealed splicing defects for 12 out of 19 variants. Four deep-intronic variants create pseudoexons or elongate the upstream exon. Furthermore, eight NCSS variants cause a partial deletion or skipping of one or more exons in messenger RNAs. Among the 12 variants, nine lead to premature stop codons and predicted truncated ABCA4 proteins. At least two deep-intronic variants affect splice enhancer and silencer motifs and, therefore, these conserved sequences should be carefully evaluated when predicting the outcome of NCSS and deep-intronic variants.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Mutação , Sítios de Splice de RNA , Doenças Retinianas/genética , Processamento Alternativo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Íntrons , Fenótipo , Análise de Sequência de DNA
4.
Clin Lab ; 62(10): 2045-2051, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28164527

RESUMO

BACKGROUND: Human Leukocyte Antigen (HLA) has an important role in presenting self and non-self-antigens to T-cell receptors on T lymphocytes. For tissue transplantation and the possibility of graft rejection, these HLA antigens on the surface of the donor and recipient's cells should be checked. METHODS: In this study, a novel technique was used for HLA typing by cloning and sequencing. The most polymorphic exons of HLA-A, HLA-B, and HLA-DRB1 in five unrelated persons were cloned into the T-vector. Afterward, the sequencing data were analyzed using a new computer software named SAF (Second Allele Finder), which was designed for this study. RESULTS: Using this new technique, the HLA typing was performed in five unrelated persons, for four of them the HLA typing was done by the PCR-SSP method. Despite that the PCR-SSP method is typing in the first field, the results of this study were obtained in the third field, which is more valid and accurate. CONCLUSIONS: This study presents a new, accurate, and low cost technique for typing HLA loci in tissue transplantation especially in bone marrow transplantation.


Assuntos
Alelos , Teste de Histocompatibilidade/métodos , Software , Feminino , Humanos , Masculino , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
5.
Invest Ophthalmol Vis Sci ; 63(5): 27, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35608844

RESUMO

Purpose: Inherited retinal diseases are a group of clinically and genetically heterogeneous disorders with approximately 270 genes involved. IMPG2 is associated with adult-onset vitelliform macular dystrophy. Here, we investigated two unrelated patients with vitelliform macular dystrophy to identify the underlying genetic cause. Methods: Whole-exome sequencing identified a putative causal complex allele consisting of c.3023-15T>A and c.3023G>A (p.(Gly1008Asp)) in IMPG2 in both individuals. To assess its effect, in vitro splice assays in HEK293T and further characterization in patient-derived photoreceptor precursor cells (PPCs) were conducted. Results: The results of the midigene splice assays in HEK293T showed that the complex allele causes a variety of splicing defects ranging from a small deletion to (multiple-)exon skipping. This finding was further validated using patient-derived PPCs that showed a significant increase of out-of-frame transcripts lacking one or multiple exons compared to control-derived PPCs. Overall, control PPCs consistently showed low levels of aberrantly spliced IMPG2 transcripts that were highly elevated in patient-derived PPCs. These differences were even more obvious upon inhibition of nonsense-mediated decay with cycloheximide. Conclusions: We report a heterozygous complex allele in IMPG2 causative for adult-onset vitelliform macular dystrophy in two unrelated individuals with mild visual loss and bilateral vitelliform lesions. The predicted causal missense mutation c.3023G>A, located in the consensus splice acceptor site, enhances the splicing effect of the upstream variant c.3023-15T>A, leading to the generation of aberrant transcripts that decrease the full-length IMPG2 levels. These results suggest a haploinsufficiency mechanism of action and highlight the complementarity of using different models to functionally assesses splicing defects.


Assuntos
Distrofia Macular Viteliforme , Adulto , Alelos , Células HEK293 , Humanos , Mutação , Proteoglicanas/genética , Sítios de Splice de RNA , Distrofia Macular Viteliforme/diagnóstico , Distrofia Macular Viteliforme/genética , Sequenciamento do Exoma
6.
Cells ; 11(22)2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36429068

RESUMO

Pathogenic variants in RPE65 lead to retinal diseases, causing a vision impairment. In this work, we investigated the pathomechanism behind the frequent RPE65 variant, c.11+5G>A. Previous in silico predictions classified this change as a splice variant. Our prediction using novel software's suggested a 124-nt exon elongation containing a premature stop codon. This elongation was validated using midigenes-based approaches. Similar results were observed in patient-derived induced pluripotent stem cells (iPSC) and photoreceptor precursor cells. However, the splicing defect in all cases was detected at low levels and thereby does not fully explain the recessive condition of the resulting disease. Long-read sequencing discarded other rearrangements or variants that could explain the diseases. Subsequently, a more relevant model was employed: iPSC-derived retinal pigment epithelium (RPE) cells. In patient-derived iPSC-RPE cells, the expression of RPE65 was strongly reduced even after inhibiting a nonsense-mediated decay, contradicting the predicted splicing defect. Additional experiments demonstrated a cell-specific gene expression reduction due to the presence of the c.11+5G>A variant. This decrease also leads to the lack of the RPE65 protein, and differences in size and pigmentation between the patient and control iPSC-RPE. Altogether, our data suggest that the c.11+5G>A variant causes a cell-specific defect in the expression of RPE65 rather than the anticipated splicing defect which was predicted in silico.


Assuntos
Células-Tronco Pluripotentes Induzidas , Splicing de RNA , Humanos , Splicing de RNA/genética , Epitélio Pigmentado da Retina/metabolismo , Éxons/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
HGG Adv ; 2(4): 100046, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-35047838

RESUMO

The lack of molecular diagnoses in rare genetic diseases can be explained by limitations of current standard genomic technologies. Upcoming long-read techniques have complementary strengths to overcome these limitations, with a particular strength in identifying structural variants. By using optical genome mapping and long-read sequencing, we aimed to identify the pathogenic variant in a large family with X-linked choroideremia. In this family, aberrant splicing of exon 12 of the choroideremia gene CHM was detected in 2003, but the underlying genomic defect remained elusive. Optical genome mapping and long-read sequencing approaches now revealed an intragenic 1,752 bp inverted duplication including exon 12 and surrounding regions, located downstream of the wild-type copy of exon 12. Both breakpoint junctions were confirmed with Sanger sequencing and segregate with the X-linked inheritance in the family. The breakpoint junctions displayed sequence microhomology suggestive for an erroneous replication mechanism as the origin of the structural variant. The inverted duplication is predicted to result in a hairpin formation of the pre-mRNA with the wild-type exon 12, leading to exon skipping in the mature mRNA. The identified inverted duplication is deemed the hidden pathogenic cause of disease in this family. Our study shows that optical genome mapping and long-read sequencing have significant potential for the identification of (hidden) structural variants in rare genetic diseases.

8.
NPJ Genom Med ; 6(1): 97, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795310

RESUMO

Inherited retinal diseases (IRDs) are a major cause of visual impairment. These clinically heterogeneous disorders are caused by pathogenic variants in more than 270 genes. As 30-40% of cases remain genetically unexplained following conventional genetic testing, we aimed to obtain a genetic diagnosis in an IRD cohort in which the genetic cause was not found using whole-exome sequencing or targeted capture sequencing. We performed whole-genome sequencing (WGS) to identify causative variants in 100 unresolved cases. After initial prioritization, we performed an in-depth interrogation of all noncoding and structural variants in genes when one candidate variant was detected. In addition, functional analysis of putative splice-altering variants was performed using in vitro splice assays. We identified the genetic cause of the disease in 24 patients. Causative coding variants were observed in genes such as ATXN7, CEP78, EYS, FAM161A, and HGSNAT. Gene disrupting structural variants were also detected in ATXN7, PRPF31, and RPGRIP1. In 14 monoallelic cases, we prioritized candidate noncanonical splice sites or deep-intronic variants that were predicted to disrupt the splicing process based on in silico analyses. Of these, seven cases were resolved as they carried pathogenic splice defects. WGS is a powerful tool to identify causative variants residing outside coding regions or heterozygous structural variants. This approach was most efficient in cases with a distinct clinical diagnosis. In addition, in vitro splice assays provide important evidence of the pathogenicity of rare variants.

9.
Methods Mol Biol ; 1834: 3-27, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30324433

RESUMO

Inherited retinal diseases (IRDs) display a very high degree of clinical and genetic heterogeneity, which poses challenges in finding the underlying defects in known IRD-associated genes and in identifying novel IRD-associated genes. Knowledge on the molecular and clinical aspects of IRDs has increased tremendously in the last decade. Here, we outline the state-of-the-art techniques to find the causative genetic variants, with special attention for next-generation sequencing which can combine molecular diagnostics and retinal disease gene identification. An important aspect is the functional assessment of rare variants with RNA and protein effects which can only be predicted in silico. We therefore describe the in vitro assessment of putative splice defects in human embryonic kidney cells. In addition, we outline the use of stem cell technology to generate photoreceptor precursor cells from patients' somatic cells which can subsequently be used for RNA and protein studies. Finally, we outline the in silico methods to interpret the causality of variants associated with inherited retinal disease and the registry of these variants.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Doenças Retinianas/diagnóstico , Doenças Retinianas/genética , Animais , Mapeamento Cromossômico , Bases de Dados Genéticas , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Humanos , Padrões de Herança , Técnicas de Diagnóstico Molecular , Linhagem , Fenótipo , Sistema de Registros
10.
Mol Genet Genomic Med ; 7(6): e660, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30950243

RESUMO

BACKGROUND: Early-onset photoreceptor dystrophies are a major cause of irreversible visual impairment in children and young adults. This clinically heterogeneous group of disorders can be caused by mutations in many genes. Nevertheless, to date, 30%-40% of cases remain genetically unexplained. In view of expanding therapeutic options, it is essential to obtain a molecular diagnosis in these patients as well. In this study, we aimed to identify the genetic cause in two siblings with genetically unexplained retinal disease. METHODS: Whole exome sequencing was performed to identify the causative variants in two siblings in whom a single pathogenic variant in TULP1 was found previously. Patients were clinically evaluated, including assessment of the medical history, slit-lamp biomicroscopy, and ophthalmoscopy. In addition, a functional analysis of the putative splice variant in TULP1 was performed using a midigene assay. RESULTS: Clinical assessment showed a typical early-onset photoreceptor dystrophy in both the patients. Whole exome sequencing identified two pathogenic variants in TULP1, a c.1445G>A (p.(Arg482Gln)) missense mutation and an intronic c.718+23G>A variant. Segregation analysis confirmed that both siblings were compound heterozygous for the TULP1 c.718+23G>A and c.1445G>A variants, while the unaffected parents were heterozygous. The midigene assay for the c.718+23G>A variant confirmed an elongation of exon 7 leading to a frameshift. CONCLUSION: Here, we report the first near-exon RNA splice variant that is not present in a consensus splice site sequence in TULP1, which was found in a compound heterozygous manner with a previously described pathogenic TULP1 variant in two patients with an early-onset photoreceptor dystrophy. We provide proof of pathogenicity for this splice variant by performing an in vitro midigene splice assay, and highlight the importance of analysis of noncoding regions beyond the noncanonical splice sites in patients with inherited retinal diseases.


Assuntos
Distrofia de Cones/genética , Proteínas do Olho/genética , Adolescente , Criança , Distrofia de Cones/metabolismo , Exoma , Éxons , Proteínas do Olho/metabolismo , Feminino , Mutação da Fase de Leitura , Homozigoto , Humanos , Masculino , Mutação , Linhagem , RNA , Sítios de Splice de RNA/genética , Splicing de RNA/genética , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Irmãos , Sequenciamento do Exoma/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA