Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Phys Med Biol ; 69(11)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38657630

RESUMO

Objective. We provide optimal particle split numbers for speeding up TOPAS Monte Carlo simulations of linear accelerator (linac) treatment heads while maintaining accuracy. In addition, we provide a new TOPAS physics module for simulating photoneutron production and transport.Approach.TOPAS simulation of a Siemens Oncor linac was used to determine the optimal number of splits for directional bremsstrahlung splitting as a function of the field size for 6 MV and 18 MV x-ray beams. The linac simulation was validated against published data of lateral dose profiles and percentage depth-dose curves (PDD) for the largest square field (40 cm side). In separate simulations, neutron particle split and the custom TOPAS physics module was used to generate and transport photoneutrons, called 'TsPhotoNeutron'. Verification of accuracy was performed by comparing simulations with published measurements of: (1) neutron yields as a function of beam energy for thick targets of Al, Cu, Ta, W, Pb and concrete; and (2) photoneutron energy spectrum at 40 cm laterally from the isocenter of the Oncor linac from an 18 MV beam with closed jaws and MLC.Main results.The optimal number of splits obtained for directional bremsstrahlung splitting enhanced the computational efficiency by two orders of magnitude. The efficiency decreased with increasing beam energy and field size. Calculated lateral profiles in the central region agreed within 1 mm/2% from measured data, PDD curves within 1 mm/1%. For the TOPAS physics module, at a split number of 146, the efficiency of computing photoneutron yields was enhanced by a factor of 27.6, whereas it improved the accuracy over existing Geant4 physics modules.Significance.This work provides simulation parameters and a new TOPAS physics module to improve the efficiency and accuracy of TOPAS simulations that involve photonuclear processes occurring in high-Zmaterials found in linac components, patient devices, and treatment rooms, as well as to explore new therapeutic modalities such as very-high energy electron therapy.


Assuntos
Método de Monte Carlo , Nêutrons , Aceleradores de Partículas , Fótons , Fótons/uso terapêutico , Fatores de Tempo , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Simulação por Computador , Humanos , Radioterapia/métodos
2.
Med Phys ; 39(11): 6818-37, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23127075

RESUMO

PURPOSE: While Monte Carlo particle transport has proven useful in many areas (treatment head design, dose calculation, shielding design, and imaging studies) and has been particularly important for proton therapy (due to the conformal dose distributions and a finite beam range in the patient), the available general purpose Monte Carlo codes in proton therapy have been overly complex for most clinical medical physicists. The learning process has large costs not only in time but also in reliability. To address this issue, we developed an innovative proton Monte Carlo platform and tested the tool in a variety of proton therapy applications. METHODS: Our approach was to take one of the already-established general purpose Monte Carlo codes and wrap and extend it to create a specialized user-friendly tool for proton therapy. The resulting tool, TOol for PArticle Simulation (TOPAS), should make Monte Carlo simulation more readily available for research and clinical physicists. TOPAS can model a passive scattering or scanning beam treatment head, model a patient geometry based on computed tomography (CT) images, score dose, fluence, etc., save and restart a phase space, provides advanced graphics, and is fully four-dimensional (4D) to handle variations in beam delivery and patient geometry during treatment. A custom-designed TOPAS parameter control system was placed at the heart of the code to meet requirements for ease of use, reliability, and repeatability without sacrificing flexibility. RESULTS: We built and tested the TOPAS code. We have shown that the TOPAS parameter system provides easy yet flexible control over all key simulation areas such as geometry setup, particle source setup, scoring setup, etc. Through design consistency, we have insured that user experience gained in configuring one component, scorer or filter applies equally well to configuring any other component, scorer or filter. We have incorporated key lessons from safety management, proactively removing possible sources of user error such as line-ordering mistakes. We have modeled proton therapy treatment examples including the UCSF eye treatment head, the MGH stereotactic alignment in radiosurgery treatment head and the MGH gantry treatment heads in passive scattering and scanning modes, and we have demonstrated dose calculation based on patient-specific CT data. Initial validation results show agreement with measured data and demonstrate the capabilities of TOPAS in simulating beam delivery in 3D and 4D. CONCLUSIONS: We have demonstrated TOPAS accuracy and usability in a variety of proton therapy setups. As we are preparing to make this tool freely available for researchers in medical physics, we anticipate widespread use of this tool in the growing proton therapy community.


Assuntos
Método de Monte Carlo , Terapia com Prótons/métodos , Neoplasias Oculares/diagnóstico por imagem , Neoplasias Oculares/radioterapia , Humanos , Melanoma/diagnóstico por imagem , Melanoma/radioterapia , Medicina de Precisão , Terapia com Prótons/instrumentação , Radiocirurgia , Dosagem Radioterapêutica , Espalhamento de Radiação , Software , Tomografia Computadorizada por Raios X
3.
Phys Med Biol ; 66(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34787099

RESUMO

The chemical stage of the Monte Carlo track-structure (MCTS) code Geant4-DNA was extended for its use in DNA strand break (SB) simulations and compared against published experimental data. Geant4-DNA simulations were performed using pUC19 plasmids (2686 base pairs) in a buffered solution of DMSO irradiated by60Co or137Csγ-rays. A comprehensive evaluation of SSB yields was performed considering DMSO, DNA concentration, dose and plasmid supercoiling. The latter was measured using the super helix density value used in a Brownian dynamics plasmid generation algorithm. The Geant4-DNA implementation of the independent reaction times method (IRT), developed to simulate the reaction kinetics of radiochemical species, allowed to score the fraction of supercoiled, relaxed and linearized plasmid fractions as a function of the absorbed dose. The percentage of the number of SB after •OH + DNA and H• + DNA reactions, referred as SSB efficiency, obtained using MCTS were 13.77% and 0.74% respectively. This is in reasonable agreement with published values of 12% and 0.8%. The SSB yields as a function of DMSO concentration, DNA concentration and super helix density recreated the expected published experimental behaviors within 5%, one standard deviation. The dose response of SSB and DSB yields agreed with published measurements within 5%, one standard deviation. We demonstrated that the developed extension of IRT in Geant4-DNA, facilitated the reproduction of experimental conditions. Furthermore, its calculations were strongly in agreement with experimental data. These two facts will facilitate the use of this extension in future radiobiological applications, aiding the study of DNA damage mechanisms with a high level of detail.


Assuntos
Dano ao DNA , Dimetil Sulfóxido , Simulação por Computador , DNA/química , Método de Monte Carlo , Conformação de Ácido Nucleico , Plasmídeos
4.
Phys Med Biol ; 66(17)2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34412044

RESUMO

The chemical stage of the Monte Carlo track-structure simulation code Geant4-DNA has been revised and validated. The root-mean-square (RMS) empirical parameter that dictates the displacement of water molecules after an ionization and excitation event in Geant4-DNA has been shortened to better fit experimental data. The pre-defined dissociation channels and branching ratios were not modified, but the reaction rate coefficients for simulating the chemical stage of water radiolysis were updated. The evaluation of Geant4-DNA was accomplished with TOPAS-nBio. For that, we compared predicted time-dependentGvalues in pure liquid water for·OH, e-aq, and H2with published experimental data. For H2O2and H·, simulation of added scavengers at different concentrations resulted in better agreement with measurements. In addition, DNA geometry information was integrated with chemistry simulation in TOPAS-nBio to realize reactions between radiolytic chemical species and DNA. This was used in the estimation of the yield of single-strand breaks (SSB) induced by137Csγ-ray radiolysis of supercoiled pUC18 plasmids dissolved in aerated solutions containing DMSO. The efficiency of SSB induction by reaction between radiolytic species and DNA used in the simulation was chosen to provide the best agreement with published measurements. An RMS displacement of 1.24 nm provided agreement with measured data within experimental uncertainties for time-dependentGvalues and under the presence of scavengers. SSB efficiencies of 24% and 0.5% for·OH and H·, respectively, led to an overall agreement of TOPAS-nBio results within experimental uncertainties. The efficiencies obtained agreed with values obtained with published non-homogeneous kinetic model and step-by-step Monte Carlo simulations but disagreed by 12% with published direct measurements. Improvement of the spatial resolution of the DNA damage model might mitigate such disagreement. In conclusion, with these improvements, Geant4-DNA/TOPAS-nBio provides a fast, accurate, and user-friendly tool for simulating DNA damage under low linear energy transfer irradiation.


Assuntos
Dano ao DNA , Água , Simulação por Computador , Transferência Linear de Energia , Método de Monte Carlo
5.
Med Phys ; 48(1): 19-56, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32392626

RESUMO

BACKGROUND: Geant4 is a Monte Carlo code extensively used in medical physics for a wide range of applications, such as dosimetry, micro- and nanodosimetry, imaging, radiation protection, and nuclear medicine. Geant4 is continuously evolving, so it is crucial to have a system that benchmarks this Monte Carlo code for medical physics against reference data and to perform regression testing. AIMS: To respond to these needs, we developed G4-Med, a benchmarking and regression testing system of Geant4 for medical physics. MATERIALS AND METHODS: G4-Med currently includes 18 tests. They range from the benchmarking of fundamental physics quantities to the testing of Monte Carlo simulation setups typical of medical physics applications. Both electromagnetic and hadronic physics processes and models within the prebuilt Geant4 physics lists are tested. The tests included in G4-Med are executed on the CERN computing infrastructure via the use of the geant-val web application, developed at CERN for Geant4 testing. The physical observables can be compared to reference data for benchmarking and to results of previous Geant4 versions for regression testing purposes. RESULTS: This paper describes the tests included in G4-Med and shows the results derived from the benchmarking of Geant4 10.5 against reference data. DISCUSSION: Our results indicate that the Geant4 electromagnetic physics constructor G4EmStandardPhysics_option4 gives a good agreement with the reference data for all the tests. The QGSP_BIC_HP physics list provided an overall adequate description of the physics involved in hadron therapy, including proton and carbon ion therapy. New tests should be included in the next stage of the project to extend the benchmarking to other physical quantities and application scenarios of interest for medical physics. CONCLUSION: The results presented and discussed in this paper will aid users in tailoring physics lists to their particular application.


Assuntos
Benchmarking , Física , Radiometria , Simulação por Computador , Método de Monte Carlo
6.
Med Phys ; 37(3): 1246-53, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20384262

RESUMO

PURPOSE: To determine the properties of a megavoltage cone-beam CT system using the unflattened beam from a sintered diamond target at 4 and 6 MV. METHODS: A sintered diamond target was used in place of a graphite target as part of an imaging beam line (an unflattened beam from a graphite target) installed on a linear accelerator. The diamond target, with a greater density than the graphite target, permitted imaging at the lower beam energy (4 MV) required with the graphite target and the higher beam energy (6 MV) conventionally used with the tungsten/stainless steel target and stainless steel flattening filter. Images of phantoms and patients were acquired using the different beam lines and compared. The beam spectra and dose distributions were determined using Monte Carlo simulation. RESULTS: The diamond target allowed use of the same beam energy as for treatment, simplifying commissioning and quality assurance. Images acquired with the diamond target at 4 MV were similar to those obtained with the graphite target at 4 MV. The slight reduction in low energy photons due to the higher-Z sintering material in the diamond target had minimal effect on image quality. Images acquired at 6 MV with the diamond target showed a small decrease in contrast-to-noise ratio, resulting from a decrease in the fraction of photons in the beam in the energy range to which the detector is most sensitive. CONCLUSIONS: The diamond target provides images of a similar quality to the graphite target. Diamond allows use of the higher beam energy conventionally used for treatment, provides a higher dose rate for the same beam current, and potentially simplifies installation and maintenance of the beam line.


Assuntos
Tomografia Computadorizada de Feixe Cônico/instrumentação , Diamante/efeitos da radiação , Aumento da Imagem/instrumentação , Tomografia Computadorizada de Feixe Cônico/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
Phys Med Biol ; 65(15): 155005, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32303013

RESUMO

TOPAS-nBio was used to simulate, collision-to-collision, the complete trajectories of electrons in water generated during the explicit simulation of 64Cu decay. S-values and direct damage to the DNA were calculated representing the cell (C) and the cell nucleus (N) with concentric spheres of 5 µm and 4 µm in radius, respectively. The considered 'target'←'source' configurations, including the cell surface (Cs) and cytoplasm (Cy), were: C←C, C←Cs, N←N, N←Cy and N←Cs. Ionization cluster size distributions were also calculated in a cylinder immersed in water corresponding to a DNA segment of 10 base-pairs in length (diameter 2.3 nm, length 3.4 nm), modeling a radioactive point source moving from the central axis to the edge of the cylinder. For that, the first moment (M1) and cumulative probability of having a cluster size of 2 or more ionizations in the cylindrical volume (F2) were obtained. Finally, the direct damage to the DNA was estimated by quantifying double-strand breaks (DSBs) using the clustering algorithm DBSCAN. The S-values obtained with TOPAS-nBio for 64Cu were 7.879 × 10-4 ± 5 × 10-7, 4.351 × 10-4 ± 6 × 10-7, 1.442 × 10-3 ± 1 × 10-6, 2.596 × 10-4 ± 8 × 10-7, 1.127 × 10-4 ± 4 × 10-7 Gy Bq-s-1 for the configurations C←C, C←Cs, N←N, N←Cy and N←Cs, respectively. The difference of these values, compared with previously reported S-values for 64Cu with the code MNCP and software MIRDCell, ranged from -4% to -25% for the configurations N←N and N←Cs, respectively. On the other hand, F2 was maximum with the source at the center of the cylinder 0.373 ± 0.001, and monotonically decreased until reaching a value of 0.058 ± 0.001 at 2.3 nm. The same behavior was observed for M1 with values ranging from 2.188 ± 0.004 to 0.242 ± 0.002. Finally, the DBSCAN algorithm showed that the mean number of DNA DSBs per decay were 0.187 ± 0.001, 0.0317 ± 0.0005, and 0.0125 ± 0.0002 DSB-(Bq-s)-1 for the configurations N←N, N←Cs, and N←Cy, respectively. In conclusion, the results of the S-values show that the absorbed dose strongly depends on the distribution of the radionuclide in the cell, the dose being higher when 64Cu is internalized in the cell nucleus, which is reinforced by the nanodosimetric study by the presence of DNA DSBs attributable to the Auger electrons emitted during the decay of 64Cu.


Assuntos
Radioisótopos de Cobre , Dano ao DNA , Método de Monte Carlo , Radiometria , Algoritmos , Análise por Conglomerados , Quebras de DNA de Cadeia Dupla/efeitos da radiação
8.
Med Phys ; 36(12): 5622-32, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20095275

RESUMO

PURPOSE: Obtain an accurate simulation of the dose from the 6 and 18 MV x-ray beams from a Siemens Oncor linear accelerator by comparing simulation to measurement. Constrain the simulation by independently determining parameters of the treatment head and incident beam, in particular, the energy and spot size. METHODS: Measurements were done with the treatment head in three different configurations: (1) The clinical configuration, (2) the flattening filter removed, and (3) the target and flattening filter removed. Parameters of the incident beam and treatment head were measured directly. Incident beam energy and spectral width were determined from the percent-depth ionization of the raw beam (as described previously), spot size was determined using a spot camera, and the densities of the flattening filters were determined by weighing them. Simulations were done with EGSnrc/BEAMnrc code. An asymmetric simulation was used, including offsets of the spot, primary collimator, and flattening filter from the collimator rotation axis. RESULTS: Agreement between measurement and simulation was obtained to the least restrictive of 1% or 1 mm at 6 MV, both with and without the flattening filter in place, except for the buildup region. At 18 MV, the agreement was 1.5%/1.5 mm with the flattening filter in place and 1%/1 mm with it removed, except for in the buildup region. In the buildup region, the discrepancy was 2%/2 mm at 18 MV and 1.5%/1.5 mm at 6 MV with the flattening filter either removed or in place. The methodology for measuring the source and geometry parameters for the treatment head simulation is described. Except to determine the density of the flattening filter, no physical modification of the treatment head is necessary to obtain those parameters. In particular, the flattening filter does not need to be removed as was done in this work. CONCLUSIONS: Good agreement between measured and simulated dose distributions was obtained, even in the buildup region. The simulation was tightly constrained by independent measurements of parameters of the incident beam and treatment head. The method of obtaining the input parameters is described, and can be carried out on a clinical linear accelerator.


Assuntos
Modelos Teóricos , Doses de Radiação , Método de Monte Carlo , Raios X
9.
Med Phys ; 36(3): 698-707, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19378730

RESUMO

Monte Carlo simulations of x-ray beams typically take parameters of the electron beam in the accelerating waveguide to be free parameters. In this paper, a methodology is proposed and implemented to determine the energy, spectral width, and beam divergence of the electron source. All treatment head components were removed from the beam path, leaving only the exit window. With the x-ray target and flattener out of the beam, uncertainties in physical characteristics and relative position of the target and flattening filter, and in spot size, did not contribute to uncertainty in the energy. Beam current was lowered to reduce recombination effects. The measured dose distributions were compared with Monte Carlo simulation of the electron beam through the treatment head to extract the electron source characteristics. For the nominal 6 and 18 MV x-ray beams, the energies were 6.51 +/- 0.15 and 13.9 +/- 0.2 MeV, respectively, with the uncertainties resulting from uncertainties in the detector position in the measurement and in the stopping power in the simulations. Gaussian spectral distributions were used, with full widths at half maximum ranging from 20 +/- 4% at 6 MV to 13 +/- 4% at 18 MV required to match the fall-off portion of the percent-depth ionization curve. Profiles at the depth of maximum dose from simulations that used the manufacturer-specified exit window geometry and no beam divergence were 2-3 cm narrower than measured profiles. Two simulation configurations yielding the measured profile width were the manufacturer-specified exit window thickness with electron source divergences of 3.3 degrees at 6 MV and 1.8 degrees at 18 MV and an exit window 40% thicker than the manufacturer's specification with no beam divergence. With the x-ray target in place (and no flattener), comparison of measured to simulated profiles sets upper limits on the electron source divergences of 0.2 degrees at 6 MV and 0.1 degrees at 18 MV. A method of determining source characteristics without mechanical modification of the treatment head, and therefore feasible in clinics, is presented. The energies and spectral widths determined using this method agree with those determined with only the exit window in the beam path.


Assuntos
Radioterapia de Alta Energia/métodos , Fenômenos Biofísicos , Elétrons/uso terapêutico , Humanos , Método de Monte Carlo , Neoplasias/radioterapia , Aceleradores de Partículas/estatística & dados numéricos , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Alta Energia/estatística & dados numéricos
10.
Radiat Res ; 191(2): 125-138, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30609382

RESUMO

The TOPAS Monte Carlo (MC) system is used in radiation therapy and medical imaging research, having played a significant role in making Monte Carlo simulations widely available for proton therapy related research. While TOPAS provides detailed simulations of patient scale properties, the fundamental unit of the biological response to radiation is a cell. Thus, our goal was to develop TOPAS-nBio, an extension of TOPAS dedicated to advance understanding of radiobiological effects at the (sub-)cellular, (i.e., the cellular and sub-cellular) scale. TOPAS-nBio was designed as a set of open source classes that extends TOPAS to model radiobiological experiments. TOPAS-nBio is based on and extends Geant4-DNA, which extends the Geant4 toolkit, the basis of TOPAS, to include very low-energy interactions of particles down to vibrational energies, explicitly simulates every particle interaction (i.e., without using condensed histories) and propagates radiolysis products. To further facilitate the use of TOPAS-nBio, a graphical user interface was developed. TOPAS-nBio offers full track-structure Monte Carlo simulations, integration of chemical reactions within the first millisecond, an extensive catalogue of specialized cell geometries as well as sub-cellular structures such as DNA and mitochondria, and interfaces to mechanistic models of DNA repair kinetics. We compared TOPAS-nBio simulations to measured and published data of energy deposition patterns and chemical reaction rates (G values). Our simulations agreed well within the experimental uncertainties. Additionally, we expanded the chemical reactions and species provided in Geant4-DNA and developed a new method based on independent reaction times (IRT), including a total of 72 reactions classified into 6 types between neutral and charged species. Chemical stage simulations using IRT were a factor of 145 faster than with step-by-step tracking. Finally, we applied the geometric/chemical modeling to obtain initial yields of double-strand breaks (DSBs) in DNA fibers for proton irradiations of 3 and 50 MeV and compared the effect of including chemical reactions on the number and complexity of DSB induction. Over half of the DSBs were found to include chemical reactions with approximately 5% of DSBs caused only by chemical reactions. In conclusion, the TOPAS-nBio extension to the TOPAS MC application offers access to accurate and detailed multiscale simulations, from a macroscopic description of the radiation field to microscopic description of biological outcome for selected cells. TOPAS-nBio offers detailed physics and chemistry simulations of radiobiological experiments on cells simulating the initially induced damage and links to models of DNA repair kinetics.


Assuntos
Simulação por Computador , Radiobiologia/métodos , Gráficos por Computador , Diagnóstico por Imagem , Humanos , Transferência Linear de Energia , Método de Monte Carlo , Terapia com Prótons , Radioterapia , Interface Usuário-Computador
11.
Radiat Res ; 191(1): 76-92, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30407901

RESUMO

Our understanding of radiation-induced cellular damage has greatly improved over the past few decades. Despite this progress, there are still many obstacles to fully understand how radiation interacts with biologically relevant cellular components, such as DNA, to cause observable end points such as cell killing. Damage in DNA is identified as a major route of cell killing. One hurdle when modeling biological effects is the difficulty in directly comparing results generated by members of different research groups. Multiple Monte Carlo codes have been developed to simulate damage induction at the DNA scale, while at the same time various groups have developed models that describe DNA repair processes with varying levels of detail. These repair models are intrinsically linked to the damage model employed in their development, making it difficult to disentangle systematic effects in either part of the modeling chain. These modeling chains typically consist of track-structure Monte Carlo simulations of the physical interactions creating direct damages to DNA, followed by simulations of the production and initial reactions of chemical species causing so-called "indirect" damages. After the induction of DNA damage, DNA repair models combine the simulated damage patterns with biological models to determine the biological consequences of the damage. To date, the effect of the environment, such as molecular oxygen (normoxic vs. hypoxic), has been poorly considered. We propose a new standard DNA damage (SDD) data format to unify the interface between the simulation of damage induction in DNA and the biological modeling of DNA repair processes, and introduce the effect of the environment (molecular oxygen or other compounds) as a flexible parameter. Such a standard greatly facilitates inter-model comparisons, providing an ideal environment to tease out model assumptions and identify persistent, underlying mechanisms. Through inter-model comparisons, this unified standard has the potential to greatly advance our understanding of the underlying mechanisms of radiation-induced DNA damage and the resulting observable biological effects when radiation parameters and/or environmental conditions change.


Assuntos
Dano ao DNA , Simulação por Computador , Reparo do DNA , Transferência Linear de Energia , Modelos Teóricos , Método de Monte Carlo
12.
Med Phys ; 35(9): 4121-31, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18841865

RESUMO

To model the transport of electrons through material requires knowledge of how the electrons lose energy and scatter. Theoretical models are used to describe electron energy loss and scatter and these models are supported by a limited amount of measured data. The purpose of this work was to obtain additional data that can be used to test models of electron scattering. Measurements were carried out using 13 and 20 MeV pencil beams of electrons produced by the National Research Council of Canada research accelerator. The electron fluence was measured at several angular positions from 0 degree to 90 degrees for scattering foils of different thicknesses and with atomic numbers ranging from 4 to 79. The angle, theta 1/e at which the fluence has decreased to 1/e of its value on the central axis was used to characterize the distributions. Measured values of theta 1/e ranged from 1.5 degrees to 8 degrees with a typical uncertainty of about 1%. Distributions calculated using the EGSnrc Monte Carlo code were compared to the measured distributions. In general, the calculated distributions are narrower than the measured ones. Typically, the difference between the measured and calculated values of theta 1/e is about 1.5%, with the maximum difference being 4%. The measured and calculated distributions are related through a simple scaling of the angle, indicating that they have the same shape. No significant trends with atomic number were observed.


Assuntos
Elétrons , Metais/química , Aceleradores de Partículas , Espalhamento de Radiação
13.
Phys Med Biol ; 63(10): 105014, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29697057

RESUMO

Simulation of water radiolysis and the subsequent chemistry provides important information on the effect of ionizing radiation on biological material. The Geant4 Monte Carlo toolkit has added chemical processes via the Geant4-DNA project. The TOPAS tool simplifies the modeling of complex radiotherapy applications with Geant4 without requiring advanced computational skills, extending the pool of users. Thus, a new extension to TOPAS, TOPAS-nBio, is under development to facilitate the configuration of track-structure simulations as well as water radiolysis simulations with Geant4-DNA for radiobiological studies. In this work, radiolysis simulations were implemented in TOPAS-nBio. Users may now easily add chemical species and their reactions, and set parameters including branching ratios, dissociation schemes, diffusion coefficients, and reaction rates. In addition, parameters for the chemical stage were re-evaluated and updated from those used by default in Geant4-DNA to improve the accuracy of chemical yields. Simulation results of time-dependent and LET-dependent primary yields Gx (chemical species per 100 eV deposited) produced at neutral pH and 25 °C by short track-segments of charged particles were compared to published measurements. The LET range was 0.05-230 keV µm-1. The calculated Gx values for electrons satisfied the material balance equation within 0.3%, similar for protons albeit with long calculation time. A smaller geometry was used to speed up proton and alpha simulations, with an acceptable difference in the balance equation of 1.3%. Available experimental data of time-dependent G-values for [Formula: see text] agreed with simulated results within 7% ± 8% over the entire time range; for [Formula: see text] over the full time range within 3% ± 4%; for H2O2 from 49% ± 7% at earliest stages and 3% ± 12% at saturation. For the LET-dependent Gx, the mean ratios to the experimental data were 1.11 ± 0.98, 1.21 ± 1.11, 1.05 ± 0.52, 1.23 ± 0.59 and 1.49 ± 0.63 (1 standard deviation) for [Formula: see text], [Formula: see text], H2, H2O2 and [Formula: see text], respectively. In conclusion, radiolysis and subsequent chemistry with Geant4-DNA has been successfully incorporated in TOPAS-nBio. Results are in reasonable agreement with published measured and simulated data.


Assuntos
Simulação por Computador , DNA/química , Elétrons , Método de Monte Carlo , Imagens de Fantasmas , Radiólise de Impulso , Radiobiologia/métodos , Fenômenos Químicos , Humanos , Transferência Linear de Energia , Água
14.
Med Phys ; 44(1): 284-298, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28066887

RESUMO

PURPOSE: To determine the dependence of the accuracy in reconstruction of relative stopping power (RSP) with proton computerized tomography (pCT) scans on the purity of the proton beam and the technological complexity of the pCT scanner using standard phantoms and a digital representation of a pediatric patient. METHODS: The Monte Carlo method was applied to simulate the pCT scanner, using both a pure proton beam (uniform 200 MeV mono-energetic, parallel beam) and the Northwestern Medicine Chicago Proton Center (NMCPC) clinical beam in uniform scanning mode. The accuracy of the simulation was validated with measurements performed at NMCPC including reconstructed RSP images obtained with a preclinical prototype pCT scanner. The pCT scanner energy detector was then simulated in three configurations of increasing complexity: an ideal totally absorbing detector, a single stage detector and a multi-stage detector. A set of 15 cm diameter water cylinders containing either water alone or inserts of different material, size, and position were simulated at 90 projection angles (4° steps) for the pure and clinical proton beams and the three pCT configurations. A pCT image of the head of a detailed digital pediatric phantom was also reconstructed from the simulated pCT scan with the prototype detector. RESULTS: The RSP error increased for all configurations for insert sizes under 7.5 mm in radius, with a sharp increase below 5 mm in radius, attributed to a limit in spatial resolution. The highest accuracy achievable using the current pCT calibration step phantom and reconstruction algorithm, calculated for the ideal case of a pure beam with totally absorbing energy detector, was 1.3% error in RSP for inserts of 5 mm radius or more, 0.7 mm in range for the 2.5 mm radius inserts, or better. When the highest complexity of the scanner geometry was introduced, some artifacts arose in the reconstructed images, particularly in the center of the phantom. Replacing the step phantom used for calibration with a wedge phantom led to RSP accuracy close to the ideal case, with no significant dependence of RSP error on insert location or material. The accuracy with the multi-stage detector and NMCPC beam for the cylindrical phantoms was 2.2% in RSP error for inserts of 5 mm radius or more, 0.7 mm in range for the 2.5 mm radius inserts, or better. The pCT scan of the pediatric phantom resulted in mean RSP values within 1.3% of the reference RSP, with a range error under 1 mm, except in exceptional situations of parallel incidence on a boundary between low and high density. CONCLUSIONS: The pCT imaging technique proved to be a precise and accurate imaging tool, rivaling the current x-rays based techniques, with the advantage of being directly sensitive to proton stopping power rather than photon interaction coefficients. Measured and simulated pCT images were obtained from a wobbled proton beam for the first time. Since the in-silico results are expected to accurately represent the prototype pCT, upcoming measurements using the wedge phantom for calibration are expected to show similar accuracy in the reconstructed RSP.


Assuntos
Prótons , Tomografia Computadorizada por Raios X/instrumentação , Algoritmos , Calibragem , Processamento de Imagem Assistida por Computador , Método de Monte Carlo , Imagens de Fantasmas , Padrões de Referência , Reprodutibilidade dos Testes
15.
Med Phys ; 33(8): 3063-5, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16964884

RESUMO

Wedge-shaped dose distributions are delivered on some modern linear accelerators with a virtual wedge, combining variable dose rate and a moving jaw. Drift in the wedge factor and wedge angle of a 20 X 20 cm field for the 60 degree virtual wedge was found commonplace in several models of linear accelerator from one manufacturer. It was found that errors in dose delivery both on and off axis could exceed 5% if quality assurance checks are limited to 10 X 10 cm or smaller fields or wedge angles of 45 degrees or less. A procedure to easily identify and remedy the problem is presented. In each case the change was due to variation in dose per monitor unit (D/MU) with the electron beam pulse rate. The variation was traced to a pair of circuit boards in the dosimetry system, one for each output measurement channel. Wedge factors and dose profiles measured before and after board replacement on 4 accelerators, and for a set of defective boards placed on one of the accelerators, were compared. The effect was largest for the wedge with the steepest profile (60 degree wedge angle) and the largest field measured: 20 X 20 cm. In this case, a 1% variation in D/MU with a factor of 5 reduction in pulse rate corresponded to an average 0.8% change in wedge factor and 0.8% change in the off axis ratio at 8.5 cm off axis on the high dose side of the wedge field, 0.3% on the low dose side. After board replacement, wedge factors and profiles measured on the 4 machines generally agreed to 2% for the full range of wedge angles and field sizes. Quality assurance of virtual wedges is discussed in light of the new findings.


Assuntos
Aceleradores de Partículas/instrumentação , Garantia da Qualidade dos Cuidados de Saúde/métodos , Radiometria/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Radiometria/métodos , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
Med Phys ; 43(3): 1507-13, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26936734

RESUMO

PURPOSE: High dose rate flattening filter free (FFF) beams pose new challenges and considerations for accurate reference and relative dosimetry. The authors report errors associated with commonly used ion chambers and introduce simple methods to mitigate them. METHODS: Dosimetric errors due to (1) ion recombination effects of high dose per pulse (DPP) FFF beams and (2) volume-averaging effects of the radial profile were examined on a TrueBeam STx. Four commonly used cylindrical ion chambers spanning a range of lengths (0.29-2.3 cm) and volumes (0.016-0.6 cm(3)) were used to determine the magnitude of these effects for 6 and 10 MV unflattened x-ray beams (6XFFF and 10XFFF, respectively). Two methods were used to determine the magnitude of ion collection efficiency: (1) direct measurement of the percent depth dose (PDD) for the clinical, high DPP beam in comparison to that obtained after reducing the DPP and (2) measurement of Pion as a function of depth. Two methods were used to quantify the magnitude of volume-averaging: (1) direct measurement of volume-averaging via cross-calibration and (2) calculation of volume-averaging from radial profiles of the beam. Finally, a simple analytical expression for the radial profile volume-averaging correction factor, Prp = [OAR(0.29L)](-1), or the inverse of the off-axis ratio of dose at 0.29L, where L is the length of the chamber's sensitive volume, is introduced to mitigate the volume-averaging effect in Farmer-type chambers. RESULTS: Errors in measured PDD for the clinical beams were 1.3% ± 0.07% and 1.6% ± 0.07% at 35 cm depth for the 6XFFF and 10XFFF beam, respectively, using an IBA CC13 ion chamber, due to charge recombination with a high DPP. Volume-averaging effects were 0.4% and 0.7% for the 6XFFF and 10XFFF beam, respectively, when measured with a Farmer-type chamber. For the application of TG-51, these errors combine when using a CC13 to measure the PDD and a Farmer for absolute output dosimetry for a total error of up to 2% at dmax for the 10XFFF beam. CONCLUSIONS: Relative and absolute dosimetry in high DPP, unflattened x-ray beams of 10 MV or higher requires corrections for charge recombination and/or volume-averaging when dosimeters with certain geometries are used. Chambers used for PDD measurement are available that do not require a correction for charge recombination. A simple analytical expression of the correction factor Prp was introduced in this work to account for volume-averaging effects in Farmer chambers. Choice of an appropriate dosimeter coupled with application of the established correction factors Pion and Prp reduces the uncertainty in the PDD measurement and the reference dose measurement.


Assuntos
Doses de Radiação , Radiometria/instrumentação , Radiometria/métodos , Incerteza , Raios X
17.
Med Phys ; 32(11): 3286-94, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16370417

RESUMO

The Final Aperture Superposition Technique (FAST) is described and applied to accurate, near instantaneous calculation of the relative output factor (ROF) and central axis percentage depth dose curve (PDD) for clinical electron beams used in radiotherapy. FAST is based on precalculation of dose at select points for the two extreme situations of a fully open final aperture and a final aperture with no opening (fully shielded). This technique is different than conventional superposition of dose deposition kernels: The precalculated dose is differential in position of the electron or photon at the downstream surface of the insert. The calculation for a particular aperture (x-ray jaws or MLC, insert in electron applicator) is done with superposition of the precalculated dose data, using the open field data over the open part of the aperture and the fully shielded data over the remainder. The calculation takes explicit account of all interactions in the shielded region of the aperture except the collimator effect: Particles that pass from the open part into the shielded part, or visa versa. For the clinical demonstration, FAST was compared to full Monte Carlo simulation of 10 x 10, 2.5 x 2.5, and 2 x 8 cm2 inserts. Dose was calculated to 0.5% precision in 0.4 x 0.4 x 0.2 cm3 voxels, spaced at 0.2 cm depth intervals along the central axis, using detailed Monte Carlo simulation of the treatment head of a commercial linear accelerator for six different electron beams with energies of 6-21 MeV. Each simulation took several hours on a personal computer with a 1.7 Mhz processor. The calculation for the individual inserts, done with superposition, was completed in under a second on the same PC. Since simulations for the pre calculation are only performed once, higher precision and resolution can be obtained without increasing the calculation time for individual inserts. Fully shielded contributions were largest for small fields and high beam energy, at the surface, reaching a maximum of 5.6% at 21 MeV. Contributions from the collimator effect were largest for the large field size, high beam energy, and shallow depths, reaching a maximum of 4.7% at 21 MeV. Both shielding contributions and the collimator effect need to be taken into account to achieve an accuracy of 2%. FAST takes explicit account of the shielding contributions. With the collimator effect set to that of the largest field in the FAST calculation, the difference in dose on the central axis (product of ROF and PDD) between FAST and full simulation was generally under 2%. The maximum difference of 2.5% exceeded the statistical precision of the calculation by four standard deviations. This occurred at 18 MeV for the 2.5 x 2.5 cm2 field. The differences are due to the method used to account for the collimator effect.


Assuntos
Elétrons , Radiometria/métodos , Algoritmos , Simulação por Computador , Computadores , Computação Matemática , Método de Monte Carlo , Aceleradores de Partículas , Imagens de Fantasmas , Fótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia Assistida por Computador , Radioterapia Conformacional , Radioterapia de Alta Energia , Reprodutibilidade dos Testes , Espalhamento de Radiação , Fatores de Tempo , Raios X
18.
Phys Med Biol ; 50(5): 741-53, 2005 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-15798251

RESUMO

Accurate simulation of large electron fields may lead to improved accuracy in Monte Carlo treatment planning while simplifying the commissioning procedure. We have used measurements made with wide-open jaws and no electron applicator to adjust simulation parameters. Central axis depth dose curves and profiles of 6-21 MeV electron beams measured in this geometry were used to estimate source and geometry parameters, including those that affect beam symmetry: incident beam direction and offset of the secondary scattering foil and monitor chamber from the beam axis. Parameter estimation relied on a comprehensive analysis of the sensitivity of the measured quantities, in the large field, to source and geometry parameters. Results demonstrate that the EGS4 Monte Carlo system is capable of matching dose distributions in the largest electron field to the least restrictive of 1 cGy or 1 mm, with D(max) of 100 cGy, over the full energy range. This match results in an underestimation of the bremsstrahlung dose of 10-20% at 15-21 MeV, exceeding the combined experimental and calculational uncertainty in this quantity of 3%. The simulation of electron scattering at energies of 15-21 MeV in EGS4 may be in error. The recently released EGSnrc/BEAMnrc system may provide a better match to measurement.


Assuntos
Elétrons , Planejamento da Radioterapia Assistida por Computador/métodos , Simulação por Computador , Método de Monte Carlo , Aceleradores de Partículas , Imagens de Fantasmas , Radiometria , Espalhamento de Radiação , Água
19.
Phys Med Biol ; 50(5): 769-78, 2005 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-15798253

RESUMO

Adjustments made to Monte Carlo models during the commissioning of the simulation should be physically realistic and correspond to actual machine characteristics. Large electron fields, with the jaws fully open and the applicator removed, are sensitive to important source and geometry parameters and may provide the most accurate beam models, including those collimated by an applicator. We report on the results of a comprehensive Monte Carlo sensitivity study documenting the response of these large fields to changes in the configuration of a Siemens Primus linear accelerator. The study was performed for 6, 9 12, 15, 18 and 21 MeV configurations, and included variations of thickness, position and lateral alignment of all treatment head components. Variations of electron beam characteristics were also included in the study. Results were classified by their impact on central-axis depth dose distributions, including the bremsstrahlung tail, and on beam profiles near D(max) and in the bremsstrahlung region. Low-energy results show an increased sensitivity to electron beam properties. High-energy bremsstrahlung profiles are shown to be useful in determining misalignments between the beam axis and mechanical isocentre. For all energies, the alignment of the secondary scattering foil and monitor chamber are shown to be critical for correctly modelling beam asymmetries. The results suggest a methodology for commissioning of electron beams using Monte Carlo treatment head simulation.


Assuntos
Aceleradores de Partículas/instrumentação , Elétrons , Modelos Teóricos , Método de Monte Carlo , Fótons , Radioterapia/instrumentação , Radioterapia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Espalhamento de Radiação , Sensibilidade e Especificidade
20.
Phys Med Biol ; 60(13): 5019-35, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26061457

RESUMO

The aim of this work was to improve the computational efficiency of Monte Carlo simulations when tracking protons through a proton therapy treatment head. Two proton therapy facilities were considered, the Francis H Burr Proton Therapy Center (FHBPTC) at the Massachusetts General Hospital and the Crocker Lab eye treatment facility used by University of California at San Francisco (UCSFETF). The computational efficiency was evaluated for phase space files scored at the exit of the treatment head to determine optimal parameters to improve efficiency while maintaining accuracy in the dose calculation. For FHBPTC, particles were split by a factor of 8 upstream of the second scatterer and upstream of the aperture. The radius of the region for Russian roulette was set to 2.5 or 1.5 times the radius of the aperture and a secondary particle production cut (PC) of 50 mm was applied. For UCSFETF, particles were split a factor of 16 upstream of a water absorber column and upstream of the aperture. Here, the radius of the region for Russian roulette was set to 4 times the radius of the aperture and a PC of 0.05 mm was applied. In both setups, the cylindrical symmetry of the proton beam was exploited to position the split particles randomly spaced around the beam axis. When simulating a phase space for subsequent water phantom simulations, efficiency gains between a factor of 19.9 ± 0.1 and 52.21 ± 0.04 for the FHTPC setups and 57.3 ± 0.5 for the UCSFETF setups were obtained. For a phase space used as input for simulations in a patient geometry, the gain was a factor of 78.6 ± 7.5. Lateral-dose curves in water were within the accepted clinical tolerance of 2%, with statistical uncertainties of 0.5% for the two facilities. For the patient geometry and by considering the 2% and 2mm criteria, 98.4% of the voxels showed a gamma index lower than unity. An analysis of the dose distribution resulted in systematic deviations below of 0.88% for 20% of the voxels with dose of 20% of the maximum or more.


Assuntos
Algoritmos , Terapia com Prótons/métodos , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Método de Monte Carlo , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA