Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 290: 122262, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36577246

RESUMO

In the present work, we have fabricated silver nanoprism (AgNPrs)/silicon nanoparticle (SiNPs) hybrid arrays for highly sensitive detection of biomolecules via surface-enhanced Raman spectroscopy (SERS) technique. SiNPs having 7 to 37 nm in size and with phosphorous doping varying from 1 × 1019 to 1 × 1020 cm-3 were synthesized in nonthermal plasma synthesis. SiNPs were further immobilized on glass substrates using spin-coating, followed by deposition of AgNPrs using the drop-casting method. SERS studies showed that AgNPrs/SiNPs hybrid arrays exhibit substantial amplification of fingerprint bands of rhodamine 6G (R6G) compared to bare silicon as the reference. Raman signal intensity was found to be dependent on the size of SiNPs, with the largest nanoparticles exhibiting the highest SERS enhancement. In addition, an increase in phosphorous doping concentration was found to reduce R6G peak intensities. AgNPrs/SiNPs hybrid arrays showed excellent stability over time and high spot-to-spot reproducibility as well. Moreover, hybrid arrays enabled DNA detection through intense vibrational modes of human genomic DNA, with a lower detection limit of 1.5 pg/µL; indicating that AgNPrs/SiNPs sensors can serve as a reliable and cost-effective biosensing platform for rapid and label-free analysis of biomolecules.


Assuntos
Nanopartículas Metálicas , Silício , Humanos , Silício/química , Prata/química , Reprodutibilidade dos Testes , Nanopartículas Metálicas/química , DNA , Análise Espectral Raman/métodos
2.
Nanoscale ; 10(17): 8042-8057, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29670986

RESUMO

The exploitation of semiconductor nanocrystal (NC) films in novel electronic and optoelectronic applications requires a better understanding of charge transport in these systems. Here, we develop a model of charge transport in NC films, based on a generalization of the concept of transport energy level ET to nanocrystal assemblies, which considers both intra- and inter-NC charge transfer processes. We conclude that the role played by each of these processes can be probed from temperature-dependent measurements of charge carrier density n and mobility µ in the same films. The model also enables the determination of the position of the Fermi energy level EF with respect to ET, an important parameter of charge transport in semiconductor materials, from the temperature dependence of n. Moreover, we provide support to an essentially temperature-independent intra-NC charge carrier mobility, considered in the transport level concept, and consequently the frequently observed temperature dependence of the overall mobility µ in NC films results from a temperature variation of the inter-NC charge transport processes. Importantly, we also conclude that the temperature dependence of conductivity in NC films should result in general from a combination of temperature variations of both n and µ. By applying the model to solution-processed Si NC films, we conclude that transport within each NC is similar to that in amorphous Si (a-Si), with charges hopping along band tail states located below the conduction band edge. For Si NCs, we obtain values of ET - EF of ∼0.25 eV. The overall mobility µ in Si NC films is significantly further reduced with respect to that typically found in a-Si due to the additional transport constraints imposed by inter-NC transfer processes inherent to a nanoparticulate film. Our model accounting for inter- and intra-NC charge transport processes provides a simple and more general description of charge transport that can be broadly applied to films of semiconductor NCs.

3.
Beilstein J Nanotechnol ; 8: 2126-2138, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29090114

RESUMO

Mg doping of GaAs nanowires has been established as a viable alternative to Be doping in order to achieve p-type electrical conductivity. Although reports on the optical properties are available, few reports exist about the physical properties of intermediate-to-high Mg doping in GaAs nanowires grown by molecular beam epitaxy (MBE) on GaAs(111)B and Si(111) substrates. In this work, we address this topic and present further understanding on the fundamental aspects. As the Mg doping was increased, structural and optical investigations revealed: i) a lower influence of the polytypic nature of the GaAs nanowires on their electronic structure; ii) a considerable reduction of the density of vertical nanowires, which is almost null for growth on Si(111); iii) the occurrence of a higher WZ phase fraction, in particular for growth on Si(111); iv) an increase of the activation energy to release the less bound carrier in the radiative state from nanowires grown on GaAs(111)B; and v) a higher influence of defects on the activation of nonradiative de-excitation channels in the case of nanowires only grown on Si(111). Back-gate field effect transistors were fabricated with individual nanowires and the p-type electrical conductivity was measured with free hole concentration ranging from 2.7 × 1016 cm-3 to 1.4 × 1017 cm-3. The estimated electrical mobility was in the range ≈0.3-39 cm2/Vs and the dominant scattering mechanism is ascribed to the WZ/ZB interfaces. Electrical and optical measurements showed a lower influence of the polytypic structure of the nanowires on their electronic structure. The involvement of Mg in one of the radiative transitions observed for growth on the Si(111) substrate is suggested.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA