Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biochem J ; 480(15): 1183-1197, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37401534

RESUMO

The development and optimisation of a photoaffinity labelling (PAL) displacement assay is presented, where a highly efficient PAL probe was used to report on the relative binding affinities of compounds to specific binding sites in multiple recombinant protein domains in tandem. The N- and C-terminal bromodomains of BRD4 were used as example target proteins. A test set of 264 compounds annotated with activity against the bromodomain and extra-terminal domain (BET) family in ChEMBL were used to benchmark the assay. The pIC50 values obtained from the assay correlated well with orthogonal TR-FRET data, highlighting the potential of this highly accessible PAL biochemical screening platform.

2.
Chemistry ; 27(71): 17880-17888, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34328642

RESUMO

We present a one-step Ugi reaction protocol for the expedient synthesis of photoaffinity probes for live-cell MS-based proteomics. The reaction couples an amine affinity function with commonly used photoreactive groups, and a variety of handle functionalities. Using this technology, a series of pan-BET (BET: bromodomain and extra-terminal domain) selective bromodomain photoaffinity probes were obtained by parallel synthesis. Studies on the effects of photoreactive group, linker length and irradiation wavelength on photocrosslinking efficiency provide valuable insights into photoaffinity probe design. Optimal probes were progressed to MS-based proteomics to capture the BET family of proteins from live cells and reveal their potential on- and off-target profiles.


Assuntos
Proteômica
3.
Angew Chem Int Ed Engl ; 59(47): 21096-21105, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32745361

RESUMO

Advances in genomic analyses enable the identification of new proteins that are associated with disease. To validate these targets, tool molecules are required to demonstrate that a ligand can have a disease-modifying effect. Currently, as tools are reported for only a fraction of the proteome, platforms for ligand discovery are essential to leverage insights from genomic analyses. Fragment screening offers an efficient approach to explore chemical space. Presented here is a fragment-screening platform, termed PhABits (PhotoAffinity Bits), which utilizes a library of photoreactive fragments to covalently capture fragment-protein interactions. Hits can be profiled to determine potency and the site of crosslinking, and subsequently developed as reporters in a competitive displacement assay to identify novel hit matter. The PhABit platform is envisioned to be widely applicable to novel protein targets, identifying starting points in the development of therapeutics.


Assuntos
Antineoplásicos/análise , Compostos Bicíclicos Heterocíclicos com Pontes/análise , Reagentes de Ligações Cruzadas/química , Marcadores de Fotoafinidade/química , Pirazóis/análise , Quinoxalinas/análise , Sulfonamidas/análise , Vemurafenib/análise , Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Humanos , Ligantes , Estrutura Molecular , Proteínas/antagonistas & inibidores , Proteínas/química , Pirazóis/farmacologia , Quinoxalinas/farmacologia , Sulfonamidas/farmacologia , Vemurafenib/farmacologia
4.
Angew Chem Int Ed Engl ; 58(48): 17322-17327, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31518032

RESUMO

The CDK family plays a crucial role in the control of the cell cycle. Dysregulation and mutation of the CDKs has been implicated in cancer and the CDKs have been investigated extensively as potential therapeutic targets. Selective inhibition of specific isoforms of the CDKs is crucial to achieve therapeutic effect while minimising toxicity. We present a group of photoaffinity probes designed to bind to the family of CDKs. The site of crosslinking of the optimised probe, as well as its ability to enrich members of the CDK family from cell lysates, was investigated. In a proof of concept study, we subsequently developed a photoaffinity probe-based competition assay to profile CDK inhibitors. We anticipate that this approach will be widely applicable to the study of small molecule binding to protein families of interest.


Assuntos
Marcadores de Afinidade/química , Antineoplásicos/química , Reagentes de Ligações Cruzadas/química , Quinases Ciclina-Dependentes/antagonistas & inibidores , Isoformas de Proteínas/química , Inibidores de Proteínas Quinases/química , Ligação Competitiva , Ensaios de Seleção de Medicamentos Antitumorais , Espectrometria de Massas , Estrutura Molecular , Processos Fotoquímicos , Roscovitina , Relação Estrutura-Atividade
5.
Chem Sci ; 12(36): 12098-12106, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34667575

RESUMO

Methods for rapid identification of chemical tools are essential for the validation of emerging targets and to provide medicinal chemistry starting points for the development of new medicines. Here, we report a screening platform that combines 'direct-to-biology' high-throughput chemistry (D2B-HTC) with photoreactive fragments. The platform enabled the rapid synthesis of >1000 PhotoAffinity Bits (HTC-PhABits) in 384-well plates in 24 h and their subsequent screening as crude reaction products with a protein target without purification. Screening the HTC-PhABit library with carbonic anhydrase I (CAI) afforded 7 hits (0.7% hit rate), which were found to covalently crosslink in the Zn2+ binding pocket. A powerful advantage of the D2B-HTC screening platform is the ability to rapidly perform iterative design-make-test cycles, accelerating the development and optimisation of chemical tools and medicinal chemistry starting points with little investment of resource.

6.
ACS Med Chem Lett ; 7(6): 552-7, 2016 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-27326325

RESUMO

The BRPF (Bromodomain and PHD Finger-containing) protein family are important scaffolding proteins for assembly of MYST histone acetyltransferase complexes. A selective benzimidazolone BRPF1 inhibitor showing micromolar activity in a cellular target engagement assay was recently described. Herein, we report the optimization of this series leading to the identification of a superior BRPF1 inhibitor suitable for in vivo studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA