RESUMO
Antimicrobial peptides (AMPs) represent an efficient part of innate immunity and are found in a variety of life. Among them Histone 2A (H2A), as a promising class of AMPs, attracts great attention, but the in vivo mechanism of H2A derived AMP is still less known. Based on the acquisition of Sphistin, a synthetic 38-amino acid H2A derived peptide from Scylla paramamosain, as reported in our previous study, was truncated into three short fragments (Sph12-38, Sph20-38 and Sph30-38) and further investigated for its possible functional domains. The antimicrobial activities of these analogs against different Gram-positive bacteria, Gram-negative bacteria and fungi were illustrated. Among the analogs, Sph12-38 showed a stronger activity with a much lower minimum inhibitory concentration (3 µM) against Staphylococcus aureus, Corynebacterium glutamicum, Micrococcus lysodeikticus Fleming, Bacillus subtilis, Pseudomonas fluorescens, Aeromonas hydrophila and A. sobria in comparison with the reported Sphistin. A leakage of intracellular content was described in E. coli treated with Sph12-38. Unlike Sphistin which mainly disrupts the membrane integrity, Sph12-38 could also combine the A. sobria genomic DNA with a minimum concentration of 6 µM and was located intracellularly in cells observed under confocal laser scanning microscope imaging. In comparison with the control group of Oryzias melastigma injected with A. sobria alone, the group treated with a mixture of Sph12-38 and A. sobria showed a higher survival rate 7 days post-injection. Furthermore, in a pretreatment assay at 6 h, a higher survival rate was observed in the group injected with the mixture of Sph12-38 and A. sobria. Taken together, the synthetic peptide of Sph12-38 had a potent antimicrobial activity against bacteria. However, Sph12-38 had no cytotoxicity towards the hemolymph of S. paramamosain. Our study suggested that, as with Sph12-38, the H2A derived peptides were more likely prone to exert their activities in vivo through the truncated fragments while defending against different species of pathogens.
Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Fungos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Imunidade Inata , Oryzias/imunologia , Animais , Fungos/fisiologia , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/fisiologia , Testes de Sensibilidade MicrobianaRESUMO
Histone H2A is known to participate in host immune defense through generating special antimicrobial peptides (AMPs), for which it has been an interesting research focus to characterize this kind of peptides in vertebrates and invertebrates. Although thousands of AMPs have been reported in variety of life species, only several AMPs are known in crabs and in particular no H2A-derived AMP has yet been reported. In the present study, a 38-amino acid peptide with antimicrobial activity was determined based on the sequence analysis of a histone H2A identified from the mud crab Scylla paramamosain. The histone H2A derived peptide was an AMP-like molecule and designated as Sphistin. Sphistin showed typical features of AMPs such as amphiphilic α-helical second structrue and positive charge net. The synthetic Sphistin exerted high antimicrobial activity against Gram-positive, Gram-negative bacteria and yeast, among which Aeromonas hydrophila, Pseudomonas fluorescens and Pseudomonas stutzeri are important aquatic pathogens. Leakage of the cell content and disruption of the cell surface were observed in bacterial cells treated with Sphistin using scanning electron microscopy. It was proved that the increasing cytoplasmic membrane permeability of Escherichia coli was caused by Sphistin. Further observation under confocal microscopy showed that Sphistin could combine onto the membrane of Staphylococcus aureus, E. coli MC1061 and Pichia pastoris but not translocate into the cytoplasm. Moreover, the affinity of Sphistin with either LPS or LTA was also testified that there was an interaction between Sphistin and cell membrane. Thus, the antimicrobial mechanism of this peptide likely exerted via adsorption and subsequently permeabilization of the bacterial cell membranes other than penetrating cell membrane. In addition, synthetic Sphistin exhibited no cytotoxicity to primary cultured crab haemolymphs and mammalian cells even at a high concentration of 100 µg/mL for 24 h. This is the first report of a histone-derived Sphistin identified from S. paramamosain with a specific antimicrobial activity and mechanism, which could be a new candidate for future application in aquaculture and veterinary medicine.
Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Proteínas de Artrópodes/genética , Braquiúros/genética , Regulação da Expressão Gênica , Vírus da Síndrome da Mancha Branca 1/fisiologia , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Artrópodes/química , Proteínas de Artrópodes/metabolismo , Proteínas de Artrópodes/farmacologia , Bactérias/efeitos dos fármacos , Sequência de Bases , Braquiúros/crescimento & desenvolvimento , Braquiúros/metabolismo , Braquiúros/virologia , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Histonas/química , Histonas/genética , Histonas/metabolismo , Dados de Sequência Molecular , Especificidade de Órgãos , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Leveduras/efeitos dos fármacosRESUMO
The effects of polycyclic aromatic hydrocarbons (PAHs) have been reported to modulate the immune response in aquatic animals, but the collected information of their effects on fish immunity is so far ambiguous. This study demonstrated that Benzo[a]pyrene (BaP) exposure altered the expression pattern of an antimicrobial peptide hepcidin (PM-hepc) gene and the activities of some immune-associated parameters in the lipopolysaccharide (LPS)-challenged red sea bream (Pagrus major). It was observed that LPS could increase respiratory burst, lysozyme and antibacterial activity in P. major. However when the P. major was exposed to different concentrations of BaP (1, 4, or 8 µg L(-1) ) for 14 days and then challenged with LPS there was no significant change in the lysozyme and antibacterial activity. It was further observed that LPS could induce the PM-hepc mRNA expression at 3, 6, and 12-h post-LPS challenge. However, when P. major was exposed first to BaP for 14 days and then challenged with LPS, the expression of PM-hepc mRNA was delayed in the liver until 24 h and not significantly induced until 48 and 96 h. The mRNA expression pattern was completely different from that only with LPS challenge, showing that BaP exposure changed the PM-hepc mRNA expression pattern of fish with LPS challenge. This study demonstrated that BaP exposure can weaken or inhibit the induction of lysozyme and antibacterial activity in the LPS-challenged P. major; conversely BaP exposure could enhance the mRNA expression of PM-hepc gene, indicating that the effect of BaP has different modulatory mechanism on hepcidin genes and immune-associated parameters.
Assuntos
Benzo(a)pireno/farmacologia , Lipopolissacarídeos/farmacologia , Dourada/imunologia , Animais , Atividade Bactericida do Sangue , Hepcidinas/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Muramidase/sangue , RNA Mensageiro/metabolismo , Explosão Respiratória , Testes de Toxicidade Aguda , Testes de Toxicidade SubagudaRESUMO
This experiment shows how to use the automated mass spectral deconvolution & identification system (AMDIS) to deconvolve the overlapped peaks in the total ion chromatogram (TIC) of volatile oil from Chineses materia medica (CMM). The essential oil was obtained by steam distillation. Its TIC was gotten by GC-MS, and the superimposed peaks in TIC were deconvolved by AMDIS. First, AMDIS can detect the number of components in TIC through the run function. Then, by analyzing the extracted spectrum of corresponding scan point of detected component and the original spectrum of this scan point, and their counterparts' spectra in the referred MS Library, researchers can ascertain the component's structure accurately or deny some compounds, which don't exist in nature. Furthermore, through examining the changeability of characteristic fragment ion peaks of identified compounds, the previous outcome can be affirmed again. The result demonstrated that AMDIS could efficiently deconvolve the overlapped peaks in TIC by taking out the spectrum of matching scan point of discerned component, which led to exact identification of the component's structure.
Assuntos
Cromatografia/métodos , Citrus/química , Medicamentos de Ervas Chinesas/química , Espectrometria de Massas/métodos , Óleos Voláteis/química , Óleos de Plantas/química , Frutas/químicaRESUMO
OBJECTIVE: To establish a derivative fluorometry method for the determination of sulfur dioxide residues in traditional Chinese medicine. METHOD: The optimal derivation condition was established. The fluorescence intensity was detected at excitation wavelength of 321 nm, and emission wavelength of 384 nm. RESULT: A linear relationship was obtained between the fluorescence intensity and the addition of reference substance in the range of 0.999 7-17.99 nmol with a correlation coeffient of 0.999 9, and the average recovery was 102.3% with RSD 4.6%. CONCLUSION: This method is simple and sensitive with quick and correct result. It can provide a reference for the determination of sulfur dioxide residues in traditional Chinese medicine.
Assuntos
Medicamentos de Ervas Chinesas/análise , Espectrometria de Fluorescência/métodos , Dióxido de Enxofre/análise , Fluorescência , Medicina Tradicional Chinesa , Sensibilidade e Especificidade , Especificidade da Espécie , TemperaturaRESUMO
Recently, two hepcidin variant genes (Om-hep1 and Om-hep2) were identified in a model fish marine medaka and both were highly induced in vivo with bacterial challenge, suggesting that the medaka hepcidin may have a similar function to other reported teleostean hepcidins. In the present study, the antibacterial, antiviral and antitumor activities of Om-hep1 were determined using its synthetic and recombinant pro-peptides. The recombinant pro-hepcidin1 was expressed in Escherichia coli and an effective method to produce recombinant Pro-Omhep1 was developed in order to obtain a right folded structure. The results showed that both the synthetic mature peptide and recombinant pro-peptide had similar antibacterial activity against Gram-positive and negative bacteria. In particular, both the synthetic mature Om-hep1 and recombinant Pro-Omhep1 inhibited the viral replication of white spot syndrome virus in the hematopoietic tissue cells of the crayfish Cherax quadricarinatus. Om-hep1 also presented antitumor activity on the cultured human hepatocellular carcinoma cells. In addition, the antimicrobial mechanism of Om-hep1 was measured and it was found that Om-hep1 was likely to be non-membranolytic. The recombinant Pro-Omhep1 performed better biological activity compared to the synthetic mature Om-hep1. This study suggested that Om-hep1 was likely to be an important multifunction protein involved in various resistance actions in the marine medaka immune system.