Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Surg Oncol ; 128(5): 743-748, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37243870

RESUMO

BACKGROUND: Papillary thyroid cancer (PTC) is the most common type of differentiated thyroid cancer. Early identification of patients at higher risk of recurrence may allow to improve relevant follow-up strategies and plan tailored treatment. Inflammation play an important role in the prognosis of cancer. We aimed to explore the predictive value of systemic inflammatory markers in PTC recurrence. METHODS: We retrospectively enrolled 200 consecutive patients who were diagnosed with PTC and underwent curative resection at Lianyungang Oriental Hospital between January 2006 and December 2018. Clinicopathological characteristics, preoperative hematologic results were analyzed. The optimal cutoff values were calculated using x-tile software. The multivariate logistic regression and univariable survival analysis were performed by SPSS. RESULTS: Multivariable analysis showed that lymph node metastases (odds ratio [OR] = 2.506, 95% confidence interval [CI]: 1.226-5.119, p = 0.012) and higher monocyte-to-lymphocyte ratio (MLR) (OR = 2.100, 95% CI: 1.042-4.233, p = 0.038) were independent prognostic factors for tumor recurrence. The cutoff value 0.22 of MLR significantly predicted recurrence at 53.3% sensitivity and 67.9% specificity. Patients with MLR ≥ 0.22 exhibited significantly poor long-term prognosis (46.8%) compared to the counterpart (76.8%, p = 0.0004). CONCLUSIONS: Preoperative MLR significantly predicted PTC recurrence after curative resection, which may provide clues for early identification of patients at higher risk of PTC recurrence.


Assuntos
Carcinoma Papilar , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/cirurgia , Câncer Papilífero da Tireoide/patologia , Estudos Retrospectivos , Carcinoma Papilar/cirurgia , Neoplasias da Glândula Tireoide/patologia , Prognóstico , Recidiva Local de Neoplasia/cirurgia , Tireoidectomia
2.
Heliyon ; 10(8): e29483, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644842

RESUMO

Methylene blue (MB) was found to exert neuroprotective effect on different brain diseases, such as ischemic stroke. This study assessed the MB effects on ischemia induced brain edema and its role in the inhibition of aquaporin 4 (AQP4) and metabotropic glutamate receptor 5 (mGluR5) expression. Rats were exposed 1 h transient middle cerebral artery occlusion (tMCAO), and MB was injected intravenously following reperfusion (3 mg/kg). Magnetic resonance imaging (MRI) and 2,3,5-triphenyltetrazolium chloride (TTC) staining was performed 48 h after the onset of tMCAO to evaluate the brain infarction and edema. Brain tissues injuries as well as the glial fibrillary acidic protein (GFAP), AQP4 and mGluR5 expressions were detected. Oxygen and glucose deprivation/reoxygenation (OGD/R) was performed on primary astrocytes (ASTs) to induce cell swelling. MB was administered at the beginning of reoxygenation, and the perimeter of ASTs was measured by GFAP immunofluorescent staining. 3,5-dihydroxyphenylglycine (DHPG) and fenobam were given at 24 h before OGD to examine their effects on MB functions on AST swelling and AQP4 expression. MB remarkably decreased the volumes of T2WI and ADC lesions, as well as the cerebral swelling. Consistently, MB treatment significantly decreased GFAP, mGluR5 and AQP4 expression at 48 h after stroke. In the cultivated primary ASTs, OGD/R and DHPG significantly increased ASTs volume as well as AQP4 expression, which was reversed by MB and fenobam treatment. The obtained results highlight that MB decreases the post-ischemic brain swelling by regulating the activation of AQP4 and mGluR5, suggesting potential applications of MB on clinical ischemic stroke treatment.

3.
Materials (Basel) ; 16(23)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38068103

RESUMO

To examine the effect mechanism of rubber and diatomite on asphalt as well as the performance of asphalt mixtures for road applications, various composite-modified asphalts are prepared using rubber and diatomite. The performance of modified asphalts with various proportions is analyzed, and the optimal dosage ratio of modifiers is determined via the response surface approach. The microstructure of rubber-diatomite composite-modified asphalt is methodically examined using Fourier transform infrared spectroscopy and scanning electron microscopy. The road performance, aging resistance, and long-term stability of asphalt mixtures are evaluated through Marshall tests, wheel tracking tests, aging wheel tracking tests, freeze-thaw splitting tests, and cyclic freeze-thaw drying aging splitting tests. The obtained results reveal that asphalt with 22% rubber and 4% diatomite exhibits the best overall performance. The composite-modified asphalt essentially demonstrates the physical blending between rubber powder, diatomite, and base asphalt. The asphalt built from them formed a uniform and stable overall structure. Compared with rubber asphalt and rubber-SBS composite-modified asphalt, rubber-diatomite composite-modified asphalt exhibits superior road performance, including better aging resistance and long-term water stability in asphalt mixtures. This study can promote the further extensive application of rubber-diatomite-modified asphalt in road engineering, while providing new ideas for cost-saving and environmentally friendly asphalt modification.

4.
J Hazard Mater ; 458: 132014, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37423131

RESUMO

The separation and recovery of palladium from electronic waste (e-waste) are of great significance as they can alleviate environmental pollution and avoid resource loss. Herein, a novel nanofiber modified by 8-hydroxyquinoline (8-HQ-Nanofiber) with adsorption sites co-constructed by N and O atoms of hard bases was fabricated, which has good affinity properties for the Pd(II) ions belonging to soft acid in the leachate of e-waste. The adsorption mechanism of 8-HQ-Nanofiber for Pd(II) ions was revealed from the perspective of molecular level relied on a series of characterizations, such as FT-IR, ss-NMR, Zeta potential, XPS, BET, SEM and DFT. The adsorption of Pd(II) ions on 8-HQ-Nanofiber reached equilibrium within 30 min and the maximum uptake capacity was 281 mg/g at 318.15 K. The adsorption behavior of Pd(II) ions by 8-HQ-Nanofiber was described by the pseudo-second-order and Langmuir isotherm models. The 8-HQ-Nanofiber exhibited relatively good adsorption performance after 15 times of column adsorption. Finally, based on hard and soft acids and bases (HSAB) theory, a strategy to regulate the Lewis alkalinity of adsorption sites by specific spatial structures is proposed, which provides a new direction for the design of adsorption sites.

5.
J Trace Elem Med Biol ; 73: 127006, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35660560

RESUMO

BACKGROUND: Astragalus Polysaccharides (APS) had been reported to exhibit antitumor activities. Given that nanoparticles possessed unique advantages in cancer treatment, APS was used as the modifier to prepare gold, silver and selenium nanoparticles (APS-Au, APS-Ag and APS-Se NPs) in the present study. METHODS: The three nanoparticles were synthesized via a green approach and characterized by DLS, TEM, XRD, FT-IR and UV-Vis. The inhibitory effects of these nanoparticles on various tumor cells proliferation were examined by MTT assay in vitro. Reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and the expression of apoptosis and autophagy-related proteins were also detected. RESULTS: Among these, APS-Se NPs displayed the most potent antitumor activities against MCF-7 cells in vitro. Flow cytometric analysis suggested that after cells were exposed to elevated concentrations of APS-Se NPs (10, 20 and 40 µmol/L), the rate of apoptosis was increasing (16.63 ± 0.89, 38.60 ± 3.46 and 44.38 ± 2.62%, respectively). Further analysis by immunofluorescence revealed an increase in intracellular ROS and a loss of MMP. This was accompanied by increased LC3-I to LC3-II conversion. Also, western blot analysis demonstrated that the ratios of Bax/Bcl-2 and cleaved caspase9/caspase 9 rose, and LC3-II and p62 protein levels increased. The addition of chloroquine, an inhibitor of autophagy, further enhanced protein expression of p62 and LC3-II. CONCLUSION: APS-Se NPs exerted their cytotoxic activity in MCF-7 cells by blocking autophagy and facilitating mitochondrial pathway-mediated apoptosis.


Assuntos
Astrágalo , Nanopartículas , Selênio , Apoptose , Astrágalo/metabolismo , Autofagia , Humanos , Células MCF-7 , Polissacarídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Selênio/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Cancer Manag Res ; 13: 287-296, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33469371

RESUMO

PURPOSE: Chemotherapy-based comprehensive treatments are the most important therapeutic methods for patients with advanced gastric cancer, but chemoresistance often cause treatment failure. Long non-coding RNA (LncRNA) BRAF-activated non-coding RNA (BANCR) has been shown to participate in many biological behaviors of multiple cancers. However, the biological roles of LncRNA BANCR in chemoresistance of gastric cancer remain unclear. Here, we aimed to evaluate the functions of LncRNA BANCR on the therapy of gastric cancer. METHODS: In this study, LncRNA BANCR expression was detected in gastric cancer patient samples and cell lines by quantity polymerase chain reaction (qPCR). Cell proliferation and viability in cisplatin-treated cells were measured using clonogenic survival assay and cell counting kit-8. The levels of ERK1/2 pathway molecules were tested with Western blot. Ly3214996, an inhibitor of ERK signal pathway, was administered to assess the effects of BANCR overexpression on gastric cancer cell with cisplatin-treated resistance. Moreover, the role of BANCR in cisplatin resistance of gastric cancer was validated in xenograft mouse models in vivo. RESULTS: Our study revealed that LncRNA BANCR expression was also significantly increased in gastric cancer tissues compared with adjacent normal tissues. Furthermore, we found that BANCR overexpression promoted gastric cancer cell resistance to cisplatin in vitro. Ly3214996 treatment abolished the BANCR overexpression-mediated gastric cancer cell cisplatin resistance via regulating the phosphorylation of ERK protein. Knock-down of BANCR significantly delayed tumor growth in xenograft mouse models. CONCLUSION: BANCR promoted cisplatin resistance of gastric cancer cells by activating ERK1/2 pathway. Inhibition of BANCR markedly suppressed the growth of gastric cancer cells in vitro as well as in vivo. These results provided a new strategy for gastric cancer therapy via targeting BANCR.

7.
RSC Adv ; 9(37): 21355-21362, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35521336

RESUMO

As a promising candidate material replacing Pb(ZrTi)O3 (PZT), the lead-free Bi0.5Na0.5TiO3 (BNT) system exhibits outstanding piezoelectric and ferroelectric properties. However, the weak thermal stability of these electric properties hampers its practical applications. In this work, we designed and prepared novel Nb-doped 0.76Bi0.5Na0.5TiO3-0.24Bi0.5K0.5TiO3 (BNT-BKT) ceramics with superior temperature stability of electric properties. Both strain as well as discharging properties of 5% Nb-doped BNT-BKT ceramics varied less than 3% and 12.5% respectively from room temperature to 160 °C, ascribed to the enlarged gap between the depolarized temperature (T d or T F-R) and the maximum dielectric temperature (T m). In addition, we investigated the impacts of Nb doping on the phase transition, dielectric, piezoelectric and ferroelectric behaviors of BNT-BKT ceramics in detail. Temperature dependent dielectric spectrums indicated that T d decreased below room temperature with Nb modifying, revealing that the phase structure transformed from ferroelectric into ergodic relaxor. Accordingly, the maximum strain value of 0.21% and recoverable energy storage of 1.2 J cm-3 were simultaneously acquired at the critical composition of 5% Nb incorporation. Our results provide an effective means of obtaining BNT-based ceramics with simultaneously thermally stable strain and discharge properties for wide temperature actuator and capacitor applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA