Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 335
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cogn Affect Behav Neurosci ; 24(1): 126-142, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38200281

RESUMO

A recent Cyberball study has indicated that the experience of loss of control can affect how people process subsequent social exclusion. This "preexposure effect" supports the idea of a common cognitive system involved in the processing of different types of social threats. To test the validity of this assumption in the current study, we reversed the sequence of the preexposure setup. We measured the effects of social exclusion on the subsequent processing of loss of control utilizing event-related brain potentials (ERPs) and self-reports. In the control group (CG, n = 26), the transition to loss of control elicited significant increases in both the P3 amplitude and the self-reported negative mood. Replicating the results of the previous preexposure study, these effects were significantly reduced by the preexposure to an independent social threat (here: social exclusion). In contrast to previous findings, these effects were not modulated by the discontinuation (EG1disc, n = 25) or continuation (EG2cont, n = 24) of the preexposure threat. Given that the P3 effect is related to the violation of subjective expectations, these results support the notion that preexposure to a specific social threat has widespread effects on the individuals' expectancy of upcoming social participation and control.


Assuntos
Eletroencefalografia , Percepção Social , Humanos , Potenciais Evocados/fisiologia , Encéfalo/fisiologia , Isolamento Social
2.
Fungal Genet Biol ; 171: 103874, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38307402

RESUMO

Aspergillus cristatus is a probiotic fungus known for its safety and abundant secondary metabolites, making it a promising candidate for various applications. However, limited progress has been made in researching A. cristatus due to challenges in genetic manipulation. The mitogen-activated protein kinase (MAPK) signaling pathway is involved in numerous physiological processes, but its specific role in A. cristatus remains unclear. In this study, we successfully developed an efficient polyethylene glycol (PEG)-mediated protoplast transformation method for A. cristatus, enabling us to investigate the function of Pmk1, Mpk1, and Hog1 in the MAPK signaling pathway. Our findings revealed that Pmk1, Mpk1, and Hog1 are crucial for sexual reproduction, melanin synthesis, and response to external stress in A. cristatus. Notably, the deletion of Pmk1, Mpk1, or Hog1 resulted in the loss of sexual reproduction capability in A. cristatus. Overall, this research on MAPK will contribute to the continued understanding of the reproductive strategy and melanin synthesis mechanism of A. cristatus.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Proteínas de Saccharomyces cerevisiae , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Melaninas/genética , Sistema de Sinalização das MAP Quinases/genética , Aspergillus/genética , Aspergillus/metabolismo , Fosforilação , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Cancer Cell Int ; 24(1): 69, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341584

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common brain tumor with the worst prognosis. Temozolomide is the only first-line drug for GBM. Unfortunately, the resistance issue is a classic problem. Therefore, it is essential to develop new drugs to treat GBM. As an oncogene, Skp2 is involved in the pathogenesis of various cancers including GBM. In this study, we investigated the anticancer effect of AAA237 on human glioblastoma cells and its underlying mechanism. METHODS: CCK-8 assay was conducted to evaluate IC50 values of AAA237 at 48, and 72 h, respectively. The Cellular Thermal Shift Assay (CETSA) was employed to ascertain the status of Skp2 as an intrinsic target of AAA237 inside the cellular milieu. The EdU-DNA synthesis test, Soft-Agar assay and Matrigel assay were performed to check the suppressive effects of AAA237 on cell growth. To identify the migration and invasion ability of GBM cells, transwell assay was conducted. RT-qPCR and Western Blot were employed to verify the level of BNIP3. The mRFP-GFP-LC3 indicator system was utilized to assess alterations in autophagy flux and investigate the impact of AAA237 on the dynamic fusion process between autophagosomes and lysosomes. To investigate the effect of compound AAA237 on tumor growth in vivo, LN229 cells were injected into the brains of mice in an orthotopic model. RESULTS: AAA237 could inhibit the growth of GBM cells in vitro. AAA237 could bind to Skp2 and inhibit Skp2 expression and the degradation of p21 and p27. In a dose-dependent manner, AAA237 demonstrated the ability to inhibit colony formation, migration, and invasion of GBM cells. AAA237 treatment could upregulate BNIP3 as the hub gene and therefore induce BNIP3-dependent autophagy through the mTOR pathway whereas 3-MA can somewhat reverse this process. In vivo, the administration of AAA237 effectively suppressed the development of glioma tumors with no side effects. CONCLUSION: Compound AAA237, a novel Skp2 inhibitor, inhibited colony formation, migration and invasion of GBM cells in a dose-dependent manner and time-dependent manner through upregulating BNIP3 as the hub gene and induced BNIP3-dependent autophagy through the mTOR pathway therefore it might be a viable therapeutic drug for the management of GBM.

4.
FASEB J ; 37(9): e22996, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37566526

RESUMO

Myocardial ischemia/reperfusion injury (MIRI) is a prevalent condition associated with numerous critical clinical conditions. miR-322 has been implicated in MIRI through poorly understood mechanisms. Our preliminary analysis indicated potential interaction of CREB-binding protein (CBP), a transcriptional coactivator and acetyltransferase, with HIF-1α/ß-catenin, which might regulate miR-322 expression. We, therefore, hypothesized that CBP/HIF-1α/ß-catenin/miR-322 axis might play a role in MIRI. Rat cardiomyocytes subjected to oxygen-glucose deprivation /reperfusion (OGD/R) and Langendorff perfused heart model were used to model MIRI in vitro and in vivo, respectively. We used various techniques such as CCK-8 assay, transferase dUTP nick end labeling staining, western blotting, RT-qPCR, chromatin immunoprecipitation (ChIP), dual-luciferase assay, co-immunoprecipitation (Co-IP), hematoxylin and eosin staining, and TTC staining to assess cell viability, apoptosis, and the levels of CBP, HIF-1α, ß-catenin, miR-322, and acetylation. Our results indicate that OGD/R in cardiomyocytes decreased CBP/HIF-1α/ß-catenin/miR-322 expression, increased cell apoptosis and cytokines, and reduced cell viability. However, overexpression of CBP or miR-322 suppressed OGD/R-induced cell injury, while knockdown of HIF-1α/ß-catenin further exacerbated the damage. HIF-1α/ß-catenin bound to miR-322 promoter to promote its expression, while CBP acetylated HIF-1α/ß-catenin for stabilization. Overexpression of CBP attenuated MIRI in rats by acetylating HIF-1α/ß-catenin to stabilize their expression, resulting in stronger binding of HIF-1α/ß-catenin with the miR-322 promoter and subsequent increased miR-322 levels. Therefore, activating CBP/HIF-1α/ß-catenin/miR-322 signaling may be a potential approach to treat MIRI.


Assuntos
MicroRNAs , Traumatismo por Reperfusão Miocárdica , Animais , Ratos , Apoptose , beta Catenina/genética , beta Catenina/metabolismo , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo
5.
Mol Cell Biochem ; 479(4): 929-940, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37256445

RESUMO

Previous reports have confirmed that miR-206 participates in inflammatory cardiomyopathy, but its definite mechanism remains elusive. This study aims to elucidate the potential mechanism of miR-206 in septic cardiomyopathy (SCM). The primary mouse cardiomyocytes were isolated and exposed to lipopolysaccharides (LPS) to construct a septic injury model in vitro. Then, the gene transcripts and protein levels were detected by RT-qPCR and/or Western blot assay. Cell proliferation, apoptosis, and inflammatory responses were evaluated by CCK-8/EdU, flow cytometry, and ELISA assays, respectively. Dual luciferase assay, Co-IP, and ubiquitination experiments were carried out to validate the molecular interactions among miR-206, USP33, and JAK2/STAT3 signaling. miR-206 was significantly downregulated, but USP33 was upregulated in LPS-induced cardiomyocytes. Gain-of-function of miR-206 elevated the proliferation but suppressed the inflammatory responses and apoptosis in LPS-induced cardiomyocytes. USP33, as a member of the USP protein family, was confirmed to be a direct target of miR-206 and could catalyze deubiquitination of JAK2 to activate JAK2/STAT3 signaling. Rescue experiments presented that neither upregulation of USP33 nor JAK2/STAT3 signaling activation considerably reversed the protective effects of miR-206 upregulation in LPS-induced cardiomyocytes. The above data showed that miR-206 protected cardiomyocytes from LPS-induced inflammatory injuries by targeting the USP33/JAK2/STAT3 signaling pathway, which might be a novel target for SCM treatment.


Assuntos
Cardiomiopatias , MicroRNAs , Animais , Camundongos , Apoptose/fisiologia , Janus Quinase 2/metabolismo , Lipopolissacarídeos , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
6.
Dermatology ; 240(1): 111-118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37494889

RESUMO

BACKGROUND: The study aimed to investigate the relationship of MAPK4 genetic variants with the efficacy of methotrexate (MTX) in psoriasis patients. METHODS: Patients treated with MTX were classified as responders or nonresponders if the Psoriasis Area and Severity Index (PASI) at week 12 was reduced to greater than 75% or lower than 75%, respectively. The genotypes of 14 MAPK4 single-nucleotide polymorphisms in 310 patients were analyzed. The expression levels of MAPK4 protein were detected by Western blot. RESULTS: Only rs9949644 polymorphisms were associated with the efficacy after adjusting for the confounding factors. Patients with the rs9949644 AG or GG genotype had a better clinical response compared to patients with the AA genotype. Rs9949644 polymorphisms were significantly associated with the PASI improvement rate. Besides, the protein level of MAPK4, positively associated with the psoriasis severity, was higher in patients. There were no significant differences of MAPK4 protein levels among the three groups. While after treatment, MAPK4 levels in the AG or GG group showed a significantly down-regulated trend. CONCLUSION: By demonstrating the significant association of MAPK4 with the efficacy of MTX, this study indicates that MAPK4 may be involved in the psoriasis progression and act as a predictor of therapeutic response.


Assuntos
Fármacos Dermatológicos , Psoríase , Humanos , Metotrexato/uso terapêutico , Fármacos Dermatológicos/uso terapêutico , Resultado do Tratamento , Psoríase/tratamento farmacológico , Psoríase/genética , Psoríase/induzido quimicamente , Polimorfismo de Nucleotídeo Único
7.
BMC Pediatr ; 24(1): 214, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528484

RESUMO

BACKGROUND: There are emerging clinical evidence for umbilical cord blood mononuclear cells (UCBMNCs) intervention to improve preterm complications. The first critical step in cell therapy is to obtain high-quality cells. This retrospective study aimed to investigate the quantity and quality of UCBMNCs from very preterm infants (VPIs) for the purpose of autologous cell therapy in prevention and treatment of preterm complications. METHODS: Very preterm infants (VPIs) born in Guangdong Women and Children Hospital from January 1, 2017, to December 8, 2022, from whom cord blood was successfully collected and separated for public or private banking, were enrolled. The UCBMNCs characters from route cord blood tests performed in cord blood bank, impact of perinatal factors on UCBMNCs, the relationship between UCBMNCs characteristics and preterm outcomes, and the correlation of UCBMNCs characteristics and peripheral blood cells in VPIs were analyzed. RESULTS: Totally, 89 VPIs underwent UCB collection and processing successfully. The median cell number post processing was 2.6 × 108. To infuse a dose of 5 × 107 cells/kg, only 3.4% of infants required a volume of more than 20 mL/kg, which exceeded the maximum safe volume limit for VPIs. However, when infusing 10 × 107 cells/kg, 25.8% of infants required a volume of more than 20 ml/kg volume. Antenatal glucocorticoids use and preeclampsia was associated with lower original UCBMNCs concentration. Both CD34+ hematopoietic stem cells (HSC) frequency and colony forming unit - granulocyte and macrophage (CFU-GM) number correlated negatively with gestational age (GA). UCBMNCs characters had no significant effect on preterm outcomes, whereas a significant positive correlation was observed between UCBMNCs concentration and total white blood cell, neutrophil, lymphocyte and PLT counts in peripheral blood. CONCLUSION: UCBMNCs collected from VPIs was feasible for autologous cell therapy in improving preterm complications. Setting the infusion dose of 5 × 107 cells/kg guaranteed a safe infusion volume in more than 95% of the targeted infants. UCBMNCs characters did not affect preterm complications; however, the effect of UCBMNCs concentration on peripheral blood classification count should be considered when evaluating the immunomodulation of UCBMNCs transfusion.


Assuntos
Sangue Fetal , Lactente Extremamente Prematuro , Lactente , Criança , Humanos , Recém-Nascido , Feminino , Gravidez , Estudos Retrospectivos , Contagem de Leucócitos , Leucócitos Mononucleares
8.
Int J Toxicol ; 43(1): 27-45, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37769680

RESUMO

Lacto-N-triose II (LNT II), an essential human milk oligosaccharide and precursor to lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT), was evaluated for safety. Genotoxicity was assessed through in vitro tests including Bacterial Reverse Mutation Test and mammalian cell micronucleus test, and a subchronic oral gavage toxicity study was conducted on juvenile Sprague-Dawley rats. In this study, LNT II was administered at dose levels of 0, 1,500, 2,500, or 5,000 mg/kg body weight (bw)/day for 90 days, followed by a 4-week treatment-free recovery period. LNT II was non-genotoxic in the in vitro assays. No compound-related effects were observed across all dosage levels based on various measures, including clinical observations, body weight gain, feed consumption, clinical pathology, organ weights, and histopathology. Consequently, the highest dosage of 5,000 mg/kg bw/day was established as the no-observed-adverse-effect-level (NOAEL). These results suggest the safe use of LNT II in young children formula and as a food ingredient, within the limits found naturally in human breast milk.


Assuntos
Leite Humano , Oligossacarídeos , Trissacarídeos , Humanos , Ratos , Animais , Feminino , Criança , Pré-Escolar , Ratos Sprague-Dawley , Peso Corporal , Mamíferos
9.
Angew Chem Int Ed Engl ; 63(21): e202316991, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38520357

RESUMO

Conventional strategies for highly efficient and selective CO2 photoreduction focus on the design of catalysts and cocatalysts. In this study, we discover that hydrogen bond network breakdown in reaction system can suppress H2 evolution, thereby improving CO2 photoreduction performance. Photosensitive poly(ionic liquid)s are designed as photocatalysts owing to their strong hydrogen bonding with solvents. The hydrogen bond strength is tuned by solvent composition, thereby effectively regulating H2 evolution (from 0 to 12.6 mmol g-1 h-1). No H2 is detected after hydrogen bond network breakdown with trichloromethane or tetrachloromethane as additives. CO production rate and selectivity increase to 35.4 mmol g-1 h-1 and 98.9 % with trichloromethane, compared with 0.6 mmol g-1 h-1 and 26.2 %, respectively, without trichloromethane. Raman spectroscopy and theoretical calculations confirm that trichloromethane broke the systemic hydrogen bond network and subsequently suppressed H2 evolution. This hydrogen bond network breakdown strategy may be extended to other catalytic reactions involving H2 evolution.

10.
Angew Chem Int Ed Engl ; 63(22): e202403972, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38491769

RESUMO

Recycling of carbon fiber-reinforced polymer composites (CFRCs) based on thermosetting plastics is difficult. In the present study, high-performance CFRCs are fabricated through complexation of aromatic pinacol-cross-linked polyurethane (PU-AP) thermosets with carbon fiber (CF) cloths. PU-AP thermosets exhibit a breaking strength of 95.5 MPa and toughness of 473.6 MJ m-3 and contain abundant hydrogen-bonding groups, which can have strong adhesion with CFs. Because of the high interfacial adhesion between CF cloths and PU-AP thermosets and high toughness of PU-AP thermosets, CF/PU-AP composites possess a high tensile strength of >870 MPa. Upon heating in N,N-dimethylacetamide (DMAc) at 100 °C, the aromatic pinacols in the CF/PU-AP composites can be cleaved, generating non-destructive CF cloths and linear polymers that can be converted to high-performance elastomers. The elastomers are mechanically robust, healable, reprocessable, and damage-resistant with an extremely high tensile strength of 74.2 MPa and fracture energy of 149.6 kJ m-2. As a result, dissociation of CF/PU-AP composites enables the recovery of reusable CF cloths and high-performance elastomers, thus realizing the upcycling of CF/PU-AP composites.

11.
Radiology ; 306(1): 160-169, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36066369

RESUMO

Background Although deep learning has brought revolutionary changes in health care, reliance on manually selected cross-sectional images and segmentation remain methodological barriers. Purpose To develop and validate an automated preoperative artificial intelligence (AI) algorithm for tumor and lymph node (LN) segmentation with CT imaging for prediction of LN metastasis in patients with pancreatic ductal adenocarcinoma (PDAC). Materials and Methods In this retrospective study, patients with surgically resected, pathologically confirmed PDAC underwent multidetector CT from January 2015 to April 2020. Three models were developed, including an AI model, a clinical model, and a radiomics model. CT-determined LN metastasis was diagnosed by radiologists. Multivariable logistic regression analysis was conducted to develop the clinical and radiomics models. The performance of the models was determined on the basis of their discrimination and clinical utility. Kaplan-Meier curves, the log-rank test, or Cox regression were used for survival analysis. Results Overall, 734 patients (mean age, 62 years ± 9 [SD]; 453 men) were evaluated. All patients were split into training (n = 545) and validation (n = 189) sets. Patients who had LN metastasis (LN-positive group) accounted for 340 of 734 (46%) patients. In the training set, the AI model showed the highest performance (area under the receiver operating characteristic curve [AUC], 0.91) in the prediction of LN metastasis, whereas the radiologists and the clinical and radiomics models had AUCs of 0.58, 0.76, and 0.71, respectively. In the validation set, the AI model showed the highest performance (AUC, 0.92) in the prediction of LN metastasis, whereas the radiologists and the clinical and radiomics models had AUCs of 0.65, 0.77, and 0.68, respectively (P < .001). AI model-predicted positive LN metastasis was associated with worse survival (hazard ratio, 1.46; 95% CI: 1.13, 1.89; P = .004). Conclusion An artificial intelligence model outperformed radiologists and clinical and radiomics models for prediction of lymph node metastasis at CT in patients with pancreatic ductal adenocarcinoma. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Chu and Fishman in this issue.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Masculino , Humanos , Pessoa de Meia-Idade , Metástase Linfática , Estudos Retrospectivos , Inteligência Artificial , Tomografia Computadorizada Multidetectores , Linfonodos , Neoplasias Pancreáticas
12.
BMC Neurosci ; 24(1): 9, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709248

RESUMO

AIMS/INTRODUCTION: As a common complication in elderly patients after surgery/anesthesia, postoperative cognitive dysfunction (POCD) is mainly characterized by memory, attention, motor, and intellectual retardation. Neuroinflammation is one of the most uncontroversial views in POCD. The sevoflurane-induced neurotoxicity has attracted widespread attention in recent years. However, its mechanism has not been determined. This study aimed to observe the effects of sevoflurane on cognitive function and the changes in inflammatory indices and autophagy protein expression in the prefrontal cortex in aged rats. METHOD: Before the experiment, D-galactose was diluted with normal saline into a liquid with a concentration of 125 mg/kg and injected subcutaneously into the neck and back of rats for 42 days to establish the aging rat model. Morris water maze experiments were performed, including positioning navigation (5 days) and space exploration (1 day). The POCD model was established by 3.2% sevoflurane inhalation. The rats were treated with or without MCC950, a potent and selective nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inhibitor, followed by autophagy agonists and autophagy inhibitors. The expression levels of inflammasome-related protein NLRP3 and autophagy-related proteins LC3B and P62 were detected to test the behavior of rats with a water maze. RESULTS: We found that sevoflurane exposure affected learning and working memory ability in aged rats. We also observed microglia activation in the prefrontal cortex. NLRP3 protein expression was significantly upregulated after sevoflurane inhalation. NLRP3 inflammasome activation induced increased expression and mRNA expression of cleaved Caspase-1 and inflammatory cytokines IL-1ß and IL-18, and increased secretion of peripheral proinflammatory cytokines. The inhibitor MCC950 was used to improve cognitive ability and inflammation in rats and inhibit the secretion of cytokines. In addition, we demonstrated that significant inhibition of autophagy (decreased LC3-II/I and increased P62) was accompanied by increased activation of NLRP3 inflammasomes and more severe neural cell damage. However, autophagy inhibitor rapamycin administration to activate autophagy resulted in the inhibition of NLRP3 inflammasomes, ultimately attenuating neuronal injury. CONCLUSIONS: The activation of autophagy suppressed the formation of NLRP3 inflammasomes. It also alleviated cognitive impairment in aged rats.


Assuntos
Disfunção Cognitiva , Inflamassomos , Ratos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sevoflurano/farmacologia , Autofagia , Citocinas/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Proteínas de Transporte
13.
New Phytol ; 239(3): 949-963, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37247338

RESUMO

Ascorbic acid (AsA) is a water-soluble antioxidant that plays important roles in plant development and human health. Understanding the regulatory mechanism underlying AsA biosynthesis is imperative to the development of high AsA plants. In this study, we reveal that the auxin response factor SlARF4 transcriptionally inhibits SlMYB99, which subsequently modulates AsA accumulation via transcriptional activation of AsA biosynthesis genes GPP, GLDH, and DHAR. The auxin-dependent transcriptional cascade of SlARF4-SlMYB99-GPP/GLDH/DHAR modulates AsA synthesis, while mitogen-activated protein kinase SlMAPK8 not only phosphorylates SlMYB99, but also activates its transcriptional activity. Both SlMYB99 and SlMYB11 proteins physically interact with each other, thereby synergistically regulating AsA biosynthesis by upregulating the expression of GPP, GLDH, and DHAR genes. Collectively, these results demonstrate that auxin and abscisic acid antagonistically regulate AsA biosynthesis during development and drought tolerance in tomato via the SlMAPK8-SlARF4-SlMYB99/11 module. These findings provide new insights into the mechanism underlying phytohormone regulation of AsA biosynthesis and provide a theoretical basis for the future development of high AsA plants via molecular breeding.


Assuntos
Ácido Abscísico , Solanum lycopersicum , Humanos , Solanum lycopersicum/genética , Ácidos Indolacéticos , Ácido Ascórbico , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas
14.
Opt Express ; 31(25): 42549-42561, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087626

RESUMO

Vortex beams that carry orbital angular moment (OAM) have recently attracted a great amount of research interest, and metasurfaces and planar microcavities have emerged as two prominent, but mostly separated, methods for Si chip-based vortex beam emission. In this work, we demonstrate in numerical simulation for the first time the hybridization of these two existing methods in a Si chip-based passive emitter (i.e., a light coupler). A unique feature of this device is its broken conjugate symmetry, which originates from introducing a metasurface phase gradient along a microring. The broken conjugate symmetry creates a new phenomenon that we refer to as asymmetric vortex beam emission. It allows two opposite input directions to generate two independent sets of OAM values, a capability that has never been reported before in Si chip-based passive emitters. In addition, we have also developed here a new analytical method to extract the OAM spectrum from a vector vortex beam. This analytical method will prove to be useful for vector vortex beam analysis, as mode purity analysis has rarely been reported in literature due to the complexity of the full-vector nature of such beams. This study provides new approaches for both the design and the analysis of integrated vortex beam emission, which could be utilized in many applications such as free-space optical communications and microfluidic particle manipulation.

15.
Opt Express ; 31(10): 15876-15887, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157678

RESUMO

Integration of metasurfaces and SOI (silicon-on-insulator) chips can leverage the advantages of both metamaterials and silicon photonics, enabling novel light shaping functionalities in planar, compact devices that are compatible with CMOS (complementary metal-oxide-semiconductor) production. To facilitate light extraction from a two-dimensional metasurface vertically into free space, the established approach is to use a wide waveguide. However, the multi-modal feature of such wide waveguides can render the device vulnerable to mode distortion. Here, we propose a different approach, where an array of narrow, single-mode waveguides is used instead of a wide, multi-mode waveguide. This approach tolerates nano-scatterers with a relatively high scattering efficiency, for example Si nanopillars that are in direct contact with the waveguides. Two example devices are designed and numerically studied as demonstrations: the first being a beam deflector that deflects light into the same direction regardless of the direction of input light, and the second being a light-focusing metalens. This work shows a straightforward approach of metasurface-SOI chip integration, which could be useful for emerging applications such as metalens arrays and neural probes that require off-chip light shaping from relatively small metasurfaces.

16.
Mol Cell Biochem ; 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37347361

RESUMO

Septic cardiomyopathy (SCM) is one of the most serious complications of sepsis. The present study investigated the role and mechanism of upstream stimulatory factor 2 (USF2) in SCM. Serum samples were extracted from SCM patients and healthy individuals. A murine model of sepsis was induced by caecal ligation and puncture (CLP) surgery. Myocardial injury was examined by echocardiography and HE staining. ELISA assay evaluated myocardial markers (CK-MB, cTnI) and inflammatory cytokines (TNF-α, IL-1ß, IL-18). Primary mouse cardiomyocytes were treated with lipopolysaccharide (LPS) to simulate sepsis in vitro. RT-qPCR and Western blot were used for analyzing gene and protein levels. CCK-8 assay assessed cell viability. NLRP3 was detected by immunofluorescence. ChIP, RIP and dual luciferase reporter assays were conducted to validate the molecular associations. USF2 was increased in serum from SCM patients, septic mice and primary cardiomyocytes. USF2 silencing improved the survival of septic mice and attenuated sepsis-induced myocardial pyroptosis and inflammation in vitro and in vivo. Mechanistically, USF2 could directly bind to the promoter of miR-206 to transcriptionally inhibit its expression. Moreover, RhoB was confirmed as a target of miR-206 and could promote ROCK activation and NLRP3 inflammasome formation. Moreover, overexpression of RhoB remarkably reversed the protection against LPS-induced inflammation and pyroptosis mediated by USF2 deletion or miR-206 overexpression in cardiomyocytes. The above findings elucidated that USF2 knockdown exerted a cardioprotective effect on sepsis by decreasing pyroptosis and inflammation via miR-206/RhoB/ROCK pathway, suggesting that USF2 may be a novel drug target in SCM.

17.
Eur Radiol ; 33(5): 3580-3591, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36884086

RESUMO

OBJECTIVES: To develop and validate a radiomics nomogram based on a fully automated pancreas segmentation to assess pancreatic exocrine function. Furthermore, we aimed to compare the performance of the radiomics nomogram with the pancreatic flow output rate (PFR) and conclude on the replacement of secretin-enhanced magnetic resonance cholangiopancreatography (S-MRCP) by the radiomics nomogram for pancreatic exocrine function assessment. METHODS: All participants underwent S-MRCP between April 2011 and December 2014 in this retrospective study. PFR was quantified using S-MRCP. Participants were divided into normal and pancreatic exocrine insufficiency (PEI) groups using the cut-off of 200 µg/L of fecal elastase-1. Two prediction models were developed including the clinical and non-enhanced T1-weighted imaging radiomics model. A multivariate logistic regression analysis was conducted to develop the prediction models. The models' performances were determined based on their discrimination, calibration, and clinical utility. RESULTS: A total of 159 participants (mean age [Formula: see text] standard deviation, 45 years [Formula: see text] 14;119 men) included 85 normal and 74 PEI. All the participants were divided into a training set comprising 119 consecutive patients and an independent validation set comprising 40 consecutive patients. The radiomics score was an independent risk factor for PEI (odds ratio = 11.69; p < 0.001). In the validation set, the radiomics nomogram exhibited the highest performance (AUC, 0.92) in PEI prediction, whereas the clinical nomogram and PFR had AUCs of 0.79 and 0.78, respectively. CONCLUSION: The radiomics nomogram accurately predicted pancreatic exocrine function and outperformed pancreatic flow output rate on S-MRCP in patients with chronic pancreatitis. KEY POINTS: • The clinical nomogram exhibited moderate performance in diagnosing pancreatic exocrine insufficiency. • The radiomics score was an independent risk factor for pancreatic exocrine insufficiency, and every point rise in the rad-score was associated with an 11.69-fold increase in pancreatic exocrine insufficiency risk. • The radiomics nomogram accurately predicted pancreatic exocrine function and outperformed the clinical model and pancreatic flow output rate quantified by secretin-enhanced magnetic resonance cholangiopancreatography on MRI in patients with chronic pancreatitis.


Assuntos
Insuficiência Pancreática Exócrina , Pancreatite Crônica , Humanos , Masculino , Pessoa de Meia-Idade , Colangiopancreatografia por Ressonância Magnética/métodos , Insuficiência Pancreática Exócrina/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Pâncreas/diagnóstico por imagem , Pâncreas/patologia , Pancreatite Crônica/diagnóstico por imagem , Estudos Retrospectivos , Secretina , Feminino
18.
Cell Biol Int ; 47(8): 1344-1353, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36987947

RESUMO

Bufalin, a major cardiotonic compound of the traditional Chinese medicine Chanshu has been used for cancer treatment for several years. However, the molecular mechanisms of Bufalin-induced autophagy in osteosarcoma (OS) is not fully understood. In the present study, it was shown that Bufalin induced crosstalk between apoptosis and autophagy, which resulted in OS cell death. Mechanistically, Bufalin induced autophagy by increased the ratio of microtubule-associated protein 1A/1B-light chain 3 (LC3)-II/LC3-I, and inducing apoptosis via the caspase-dependent pathway. Inhibition of autophagy promoted Bufalin-induced cell death. In contrast, suppression of apoptosis enhanced Bufalin-induced autophagy. In addition, it was found that Bufalin activated the Ca2+ /calmodulin-dependent protein kinase ß/AMPK/Beclin1 pathway, which resulted in induction of autophagy. These findings provide a mechanistic understanding of the means by which Bufalin mediates autophagy and apoptosis in OS cells.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Osteossarcoma , Humanos , Proteína Beclina-1 , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Apoptose , Autofagia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo
19.
Cell Biol Int ; 47(5): 894-906, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36950834

RESUMO

Myocardial ischemia/reperfusion injury (MIRI) is a major cause of heart failure after myocardial infarction. It has been reported that miR-322 is involved in MIRI progression, while the molecular mechanism of miR-322 in regulating MIRI progression needs to be further probed. MIRI cell model was established by oxygen-glucose deprivation/reoxygenation (OGD/R). Cell viability was assessed using MTS assay. Flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining were employed to analyze cell apoptosis. In addition, the interactions between miR-322, Smad7/Smurf2, hypoxia-inducible factor alpha (HIF-1α), and ß-catenin were verified by dual-luciferase reporter gene assay. Our results displayed that miR-322 was significantly downregulated in OGD/R-treated H9c2 cells, and its overexpression resulted in increased cell viability and reduced the apoptosis. Smurf2 and Smad7 were identified as the direct targets of miR-322. Smad7 knockdown or Smurf2 knockdown increased OGD/R-treated H9c2 cell viability and suppressed the apoptosis. Meanwhile, miR-322 mimics abolished the mitigating effect of Smad7 or Smurf2 overexpression on MIRI. In addition, the Smad3/ß-catenin pathway was identified as the downstream pathway of Smurf2/Smad7. Moreover, it was found that HIF-1α interacted with the miR-322 promoter, and ß-catenin interacted with the HIF-1α promoter to form a loop. HIF-1α-induced upregulated miR-322 activated the Smad3/ß-catenin pathway by targeting Smurf2 and Smad7 to improve MIRI; meanwhile, ß-catenin/HIF-1α formed a positive feedback loop to continuously improve MIRI.


Assuntos
MicroRNAs , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Humanos , Apoptose , beta Catenina/metabolismo , Retroalimentação , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Proteína Smad3/metabolismo , Proteína Smad7/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
20.
BMC Neurol ; 23(1): 182, 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37147573

RESUMO

BACKGROUND: TDP-43 (43-kD transactive response DNA-binding protein) is a DNA-/RNA-binding protein that plays an important role in several nervous system diseases, such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Whether it plays an important role in glioma patients is unknown. METHODS: Datasets were downloaded from the Chinese Glioma Genome Atlas (CGGA) website ( http://www.cgga.org.cn/ ). Cox survival analysis was performed to determine the relationship between TARDBP gene expression and the overall survival of glioma patients. GO analyses were performed to determine the biological functions of the TARDBP gene. Finally, we used PRS type, age, grade, IDH mutation status, 1p/19q codeletion status, and expression value of the TARDBP gene to construct a prediction model. With this model, we can predict patients' 1-, 2-, 3-, 5-, and 10-year survival rates. RESULTS: The TARDBP gene plays an important role in glioma patients. The expression of the TARDBP gene has a significant correlation with glioma patient survival. We also constructed an ideal prediction model. CONCLUSION: Our findings suggest that the TARDBP gene and the protein it encodes play important roles in glioma patients. The expression of the TARDBP gene has a significant correlation with the overall survival of glioma patients.


Assuntos
Neoplasias Encefálicas , Proteínas de Ligação a DNA , Glioma , Humanos , Neoplasias Encefálicas/genética , Proteínas de Ligação a DNA/genética , Glioma/genética , Mutação , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA