Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Cancer ; 24(1): 4, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166752

RESUMO

Long non-coding RNA (lncRNA) H19 has gained significant recognition as a pivotal contributor to the initiation and advancement of gynecologic cancers, encompassing ovarian, endometrial, cervical, and breast cancers. H19 exhibits a complex array of mechanisms, demonstrating dualistic effects on tumorigenesis as it can function as both an oncogene and a tumor suppressor, contingent upon the specific context and type of cancer being investigated. In ovarian cancer, H19 promotes tumor growth, metastasis, and chemoresistance through modulation of key signaling pathways and interaction with microRNAs. Conversely, in endometrial cancer, H19 acts as a tumor suppressor by inhibiting proliferation, inducing apoptosis, and regulating epithelial-mesenchymal transition. Additionally, H19 has been implicated in cervical and breast cancers, where it influences cell proliferation, invasion, and immune evasion. Moreover, H19 has potential as a diagnostic and prognostic biomarker for gynecologic cancers, with its expression levels correlating with clinical parameters and patient outcomes. Understanding the functional roles of H19 in gynecologic cancers is crucial for the development of targeted therapeutic strategies and personalized treatment approaches. Further investigation into the intricate molecular mechanisms underlying H19's involvement in gynecologic malignancies is warranted to fully unravel its therapeutic potential and clinical implications. This review aims to elucidate the functional roles of H19 in various gynecologic malignancies.


Assuntos
Neoplasias da Mama , Neoplasias dos Genitais Femininos , MicroRNAs , RNA Longo não Codificante , Feminino , Humanos , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias dos Genitais Femininos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais
2.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000215

RESUMO

The oviduct provides an optimal environment for the final preparation, transport, and survival of gametes, the fertilization process, and early embryonic development. Most of the studies on reproduction are based on in vitro cell culture models because of the cell's accessibility. It creates opportunities to explore the complexity of directly linked processes between cells. Previous studies showed a significant expression of genes responsible for cell differentiation, maturation, and development during long-term porcine oviduct epithelial cells (POECs) in vitro culture. This study aimed at establishing the transcriptomic profile and comprehensive characteristics of porcine oviduct epithelial cell in vitro cultures, to compare changes in gene expression over time and deliver information about the expression pattern of genes highlighted in specific GO groups. The oviduct cells were collected after 7, 15, and 30 days of in vitro cultivation. The transcriptomic profile of gene expression was compared to the control group (cells collected after the first day). The expression of COL1A2 and LOX was enhanced, while FGFBP1, SERPINB2, and OVGP1 were downregulated at all selected intervals of cell culture in comparison to the 24-h control (p-value < 0.05). Adding new detailed information to the reproductive biology field about the diversified transcriptome profile in POECs may create new future possibilities in infertility treatments, including assisted reproductive technique (ART) programmes, and may be a valuable tool to investigate the potential role of oviduct cells in post-ovulation events.


Assuntos
Células Epiteliais , Transcriptoma , Animais , Feminino , Suínos , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Perfilação da Expressão Gênica , Células Cultivadas , Oviductos/metabolismo , Oviductos/citologia , Técnicas de Cultura de Células/métodos , Regulação da Expressão Gênica , Tubas Uterinas/metabolismo , Tubas Uterinas/citologia
3.
Neurochem Res ; 48(8): 2285-2308, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36943668

RESUMO

Parkinson's disease (PD) is a common age-related neurodegenerative disorder whose pathogenesis is not completely understood. Mitochondrial dysfunction and increased oxidative stress have been considered as major causes and central events responsible for the progressive degeneration of dopaminergic (DA) neurons in PD. Therefore, investigating mitochondrial disorders plays a role in understanding the pathogenesis of PD and can be an important therapeutic target for this disease. This study discusses the effect of environmental, genetic and biological factors on mitochondrial dysfunction and also focuses on the mitochondrial molecular mechanisms underlying neurodegeneration, and its possible therapeutic targets in PD, including reactive oxygen species generation, calcium overload, inflammasome activation, apoptosis, mitophagy, mitochondrial biogenesis, and mitochondrial dynamics. Other potential therapeutic strategies such as mitochondrial transfer/transplantation, targeting microRNAs, using stem cells, photobiomodulation, diet, and exercise were also discussed in this review, which may provide valuable insights into clinical aspects. A better understanding of the roles of mitochondria in the pathophysiology of PD may provide a rationale for designing novel therapeutic interventions in our fight against PD.


Assuntos
Doenças Mitocondriais , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/patologia , Estresse Oxidativo/fisiologia , Neurônios Dopaminérgicos/metabolismo
4.
BMC Nephrol ; 24(1): 380, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124072

RESUMO

Renal cell carcinoma (RCC), a prevalent form of renal malignancy, is distinguished by its proclivity for robust tumor proliferation and metastatic dissemination. Long non-coding RNAs (lncRNAs) have emerged as pivotal modulators of gene expression, exerting substantial influence over diverse biological processes, encompassing the intricate landscape of cancer development. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1), an exemplar among lncRNAs, has been discovered to assume functional responsibilities within the context of RCC. The conspicuous expression of MALAT-1 in RCC cells has been closely linked to the advancement of tumors and an unfavorable prognosis. Experimental evidence has demonstrated the pronounced ability of MALAT-1 to stimulate RCC cell proliferation, migration, and invasion, thereby underscoring its active participation in facilitating the metastatic cascade. Furthermore, MALAT-1 has been implicated in orchestrating angiogenesis, an indispensable process for tumor expansion and metastatic dissemination, through its regulatory influence on pro-angiogenic factor expression. MALAT-1 has also been linked to the evasion of immune surveillance in RCC, as it can regulate the expression of immune checkpoint molecules and modulate the tumor microenvironment. Hence, the potential utility of MALAT-1 as a diagnostic and prognostic biomarker in RCC emerges, warranting further investigation and validation of its clinical significance. This comprehensive review provides an overview of the diverse functional roles exhibited by MALAT-1 in RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , RNA Longo não Codificante , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/patologia , Proliferação de Células/genética , Prognóstico , Linhagem Celular Tumoral , Microambiente Tumoral/genética
5.
Cancer Cell Int ; 22(1): 209, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676702

RESUMO

Colorectal cancer (CRC) is the third cause of cancer death in the world that arises from the glandular and epithelial cells of the large intestine, during a series of genetic or epigenetic alternations. Recently, long non-coding RNAs (lncRNAs) has opened a separate window of research in molecular and translational medicine. Emerging evidence has supported that lncRNAs can regulate cell cycle of CRC cells. LncRNA NEAT1 has been verified to participate in colon cancer development and progression. NEAT1 as a competing endogenous RNA could suppress the expression of miRNAs, and then regulate molecules downstream of these miRNAs. In this review, we summarized emerging roles of NEAT1 in CRC cells.

6.
Cancer Cell Int ; 22(1): 126, 2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35305641

RESUMO

Colorectal cancer (CRC) is one of the most lethal and prevalent solid malignancies worldwide. There is a great need of accelerating the development and diagnosis of CRC. Long noncoding RNAs (lncRNA) as transcribed RNA molecules play an important role in every level of gene expression. Metastasis-associated lung adenocarcinoma transcript-1 (MALAT1) is a highly conserved nucleus-restricted lncRNA that regulates genes at the transcriptional and post-transcriptional levels. High expression of MALAT1 is closely related to numerous human cancers. It is generally believed that MALAT1 expression is associated with CRC cell proliferation, tumorigenicity, and metastasis. MALAT1 by targeting multiple signaling pathways and microRNAs (miRNAs) plays a pivotal role in CRC pathogenesis. Therefore, MALAT1 can be a potent gene for cancer prediction and diagnosis. In this review, we will demonstrate signaling pathways associated with MALAT1 in CRC.

7.
Cancer Cell Int ; 22(1): 335, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333703

RESUMO

Colorectal cancer (CRC) is a gastrointestinal tumor that develops from the colon, rectum, or appendix. The prognosis of CRC patients especially those with metastatic lesions remains unsatisfactory. Although various conventional methods have been used for the treatment of patients with CRC, the early detection and identification of molecular mechanisms associated with CRC is necessary. The scientific literature reports that altered expression of long non-coding RNAs (lncRNAs) contributed to the pathogenesis of CRC cells. LncRNA TUG1 was reported to target various miRNAs and signaling pathways to mediate CRC cell proliferation, migration, and metastasis. Therefore, TUG1 might be a potent predictive/prognostic biomarker for diagnosis of CRC.

8.
Cell Commun Signal ; 20(1): 51, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35414084

RESUMO

Extracellular vehicles (EVs) are a heterogeneous group of cell and membranous particles originating from different cell compartments. EVs participate in many essential physiological functions and mediate fetal-maternal communications. Exosomes are the smallest unit of EVs, which are delivered to the extracellular space. Exosomes can be released by the umbilical cord, placenta, amniotic fluid, and amniotic membranes and are involved in angiogenesis, endothelial cell migration, and embryo implantation. Also, various diseases such as gestational hypertension, gestational diabetes mellitus (GDM), preterm birth, and fetal growth restriction can be related to the content of placental exosomes during pregnancy. Due to exosomes' ability to transport signaling molecules and their effect on sperm function, they can also play a role in male and female infertility. In the new insight, exosomal miRNA can diagnose and treat infertilities disorders. In this review, we focused on the functions of exosomes during pregnancy. Video abstract.


Assuntos
Exossomos , Nascimento Prematuro , Exossomos/metabolismo , Feminino , Humanos , Recém-Nascido , Masculino , Placenta/metabolismo , Gravidez , Nascimento Prematuro/metabolismo , Transdução de Sinais
9.
Cancer Cell Int ; 21(1): 208, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849569

RESUMO

Hepatocellular carcinoma (HCC) is the second leading cause of death due to cancer. Although there are different treatment options, these strategies are not efficient in terms of restricting the tumor cell's proliferation and metastasis. The liver tumor microenvironment contains the non-parenchymal cells with supportive or inhibitory effects on the cancerous phenotype of HCC. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of liver carcinoma cells. Recent studies have established new approaches for the prevention and treatment of HCC using small molecules. Small molecules are compounds with a low molecular weight that usually inhibit the specific targets in signal transduction pathways. These components can induce cell cycle arrest, apoptosis, block metastasis, and tumor growth. Devising strategies for simultaneously targeting HCC and the non-parenchymal population of the tumor could lead to more relevant research outcomes. These strategies may open new avenues for the treatment of HCC with minimal cytotoxic effects on healthy cells. This study provides the latest findings on critical signaling pathways governing HCC behavior and using small molecules in the control of HCC both in vitro and in vivo models.

10.
Cell Commun Signal ; 19(1): 41, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794905

RESUMO

The family of Tribbles proteins play many critical nonenzymatic roles and regulate a wide range of key signaling pathways. Tribbles homolog 2 (Trib2) is a pseudo serine/threonine kinase that functions as a scaffold or adaptor in various physiological and pathological processes. Trib2 can interact with E3 ubiquitin ligases and control protein stability of downstream effectors. This protein is induced by mitogens and enhances the propagation of several cancer cells, including myeloid leukemia, liver, lung, skin, bone, brain, and pancreatic. Thus, Trib2 can be a predictive and valuable biomarker for the diagnosis and treatment of cancer. Recent studies have illustrated that Trib2 plays a major role in cell fate determination of stem cells. Stem cells have the capacity to self-renew and differentiate into specific cell types. Stem cells are important sources for cell-based regenerative medicine and drug screening. Trib2 has been found to increase the self-renewal ability of embryonic stem cells, the reprogramming efficiency of somatic cells, and chondrogenesis. In this review, we will focus on the recent advances of Trib2 function in tumorigenesis and stem cell fate decisions. Video abstract.


Assuntos
Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem da Célula , Proteínas Serina-Treonina Quinases/metabolismo , Células-Tronco/citologia , Humanos , Modelos Biológicos , Proteínas Serina-Treonina Quinases/química
11.
Cell Commun Signal ; 19(1): 72, 2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217316

RESUMO

The Jumonji domain-containing protein-3 (JMJD3) is a histone demethylase that regulates the trimethylation of histone H3 on lysine 27 (H3K27me3). H3K27me3 is an important epigenetic event associated with transcriptional silencing. JMJD3 has been studied extensively in immune diseases, cancer, and tumor development. There is a comprehensive epigenetic transformation during the transition of embryonic stem cells (ESCs) into specialized cells or the reprogramming of somatic cells to induced pluripotent stem cells (iPSCs). Recent studies have illustrated that JMJD3 plays a major role in cell fate determination of pluripotent and multipotent stem cells (MSCs). JMJD3 has been found to enhance self-renewal ability and reduce the differentiation capacity of ESCs and MSCs. In this review, we will focus on the recent advances of JMJD3 function in stem cell fate. Video Abstract.


Assuntos
Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Diferenciação Celular/genética , Linhagem da Célula/genética , Histona Desmetilases/genética , Histonas/genética , Humanos , Metilação
12.
Cell Biol Int ; 45(10): 2045-2053, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34180562

RESUMO

Coronavirus disease 2019 (COVID-19) is the seventh member of the bat severe acute respiratory syndrome family. COVID-19 can fuse their envelopes with the host cell membranes and deliver their genetic material. COVID-19 attacks the respiratory system and stimulates the host inflammatory responses, enhances the recruitment of immune cells, and promotes angiotensin-converting enzyme 2 activities. Patients with confirmed COVID-19 may have experienced fever, dry cough, headache, dyspnea, acute kidney injury, acute respiratory distress syndrome, and acute heart injury. Several strategies such as oxygen therapy, ventilation, antibiotic or antiviral therapy, and renal replacement therapy are commonly used to decrease COVID-19-associated mortality. However, these approaches may not be good treatment options. Therefore, the search for an alternative-novel therapy is urgently important to prevent the disease progression. Recently, microRNAs (miRNAs) have emerged as a promising strategy for COVID-19. The design of oligonucleotide against the genetic material of COVID-19 might suppress virus RNA translation. Several previous studies have shown that host miRNAs play an antiviral role and improve the treatment of patients with COVID-19. miRNAs by binding to the 3'-untranslated region (UTR) or 5'-UTR of viral RNA play an important role in COVID-19-host interplay and viral replication. miRNAs interact with multiple pathways and reduce inflammatory biomarkers, thrombi formation, and tissue damage to accelerate the patient outcome. The information in this review provides a summary of the current clinical application of miRNAs for the treatments of patients with COVID-19.


Assuntos
COVID-19/genética , COVID-19/terapia , MicroRNAs/uso terapêutico , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Humanos , MicroRNAs/genética , SARS-CoV-2/patogenicidade , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
13.
Drug Dev Res ; 81(7): 815-822, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32428356

RESUMO

Infertility is defined as not being able to become pregnant after 12 months or more of unprotected sexual intercourse. Female infertility as a serious health issue can result from ovulation disorders, menstrual cycle problems, structural problems, and environmental factors. Ovulation occurs once a month between the time of menarche and menopause. The release of a mature egg from the ovary is controlled with the hypothalamic-pituitary-ovarian axis. Several hormones such as gonadotropin-releasing hormone (GnRH), FSH (follicle-stimulating hormone), LH (luteinizing hormone), estrogen, and progesterone play fundamental roles in the ovulation process. Both FSH and LH are the main treatment for women with ovulation disorders. Depending on the reasons for infertility, several different types of treatment are available for infertile women. Fertility drugs as an important part of treatment work like the natural hormones to treat infertility. Several fertility drugs can regulate ovulation and the release of an egg from the ovary in women with polycystic ovary syndrome (PCOS) or undergoing in vitro fertilization (IVF) treatment. This mini-review is about the FDA-approved prescription drugs that induce ovulation in women with ovulatory problems.


Assuntos
Fármacos para a Fertilidade/uso terapêutico , Infertilidade Feminina/tratamento farmacológico , Ovulação/efeitos dos fármacos , Aprovação de Drogas , Feminino , Humanos , Medicamentos sob Prescrição/uso terapêutico , Estados Unidos , United States Food and Drug Administration
14.
Metab Brain Dis ; 34(5): 1243-1251, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31055786

RESUMO

Stroke is a major cause of morbidity and mortality worldwide, and extensive efforts have focused on the improvement of therapeutic strategies to reduce cell death following ischemic stroke. Uncovering the cellular and molecular pathophysiological processes in ischemic stroke have been a top priority. Long noncoding RNAs (lncRNAs) are endogenous molecules that play key roles in the pathophysiology of cerebral ischemia, and involved in the neuronal cell death during ischemic stroke. In recent years, a bulk of aberrantly expressed lncRNAs have been screened out in ischemic stroke insulted animals. LncRNAs along with their targets could affect the genetic machinery at molecular levels, and exploring their functions and mechanisms may be a promising option for ischemic stroke treatment. In this review, we summarize the current knowledge for lncRNAs in ischemic stroke, focusing on the role of specific lncRNAs that may underlie cell death to find possible therapeutic targets.


Assuntos
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Morte Celular/fisiologia , RNA Longo não Codificante/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Encéfalo/patologia , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Humanos , RNA Longo não Codificante/genética , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia
15.
J Cell Biochem ; 119(8): 6325-6336, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29393549

RESUMO

Pluripotent stem cell (PSC) lines derived from embryonated avian eggs are a convenient platform for production of various recombinant proteins and vaccines. In chicks, both embryonic stem cells (ESC) and embryonic germ cells (EGC) are considered to be pluripotent cells obtained from early blastodermal cells (stage X) and gonadal tissues (stage HH28), respectively. However, the establishment and long-term maintenance of avian PSC lines faces several challenges and differs in efficiency between chick strains. This study aims to determine the effects of PSC culture media, including serum-based and serum-free media as well as various feeder layers, growth factors, and small molecules on derivation and maintenance of avian embryonic derived-PSCs. Our results have shown that among the different culture conditions, N2B27 serum-free medium supplemented with PD0325901 and SB431542, MEK and TGFß chemical inhibitors, named as R2i and cytokine leukemia inhibitory factor (LIF) improved PSC derivation from stages X- and HH28 embryos. The application of N2B27/R2i + LIF medium validates the effect of defined pluripotency supporting medium on efficient derivation of chick PSCs and facilitates the use of these cells in biotechnology and biobanking of valuable species.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Animais , Embrião de Galinha , Galinhas
16.
Neurol Sci ; 38(7): 1167-1186, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28417216

RESUMO

Stroke is the second most common cause of death and the leading cause of disability worldwide. Brain injury following stroke results from a complex series of pathophysiological events including excitotoxicity, oxidative and nitrative stress, inflammation, and apoptosis. Moreover, there is a mechanistic link between brain ischemia, innate and adaptive immune cells, intracranial atherosclerosis, and also the gut microbiota in modifying the cerebral responses to ischemic insult. There are very few treatments for stroke injuries, partly owing to an incomplete understanding of the diverse cellular and molecular changes that occur following ischemic stroke and that are responsible for neuronal death. Experimental discoveries have begun to define the cellular and molecular mechanisms involved in stroke injury, leading to the development of numerous agents that target various injury pathways. In the present article, we review the underlying pathophysiology of ischemic stroke and reveal the intertwined pathways that are promising therapeutic targets.


Assuntos
Lesões Encefálicas/patologia , Isquemia Encefálica/patologia , Encéfalo/patologia , Acidente Vascular Cerebral/patologia , Animais , Humanos , Inflamação/patologia , Estresse Oxidativo/fisiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-38265390

RESUMO

Prostate cancer (PCa) is the second prevalent cancer in men. Recent studies have highlighted the critical role of prostate cancer stem cells (PCSCs) in driving tumor initiation and metastasis of the prostate tissue. PCSCs are a rare population of cells in the prostate that possess self-renewal and differentiation capabilities, making them a potential therapeutic target for effective PCa treatment. Therefore, targeting PCSCs might be a novel strategy for the treatment of PCs. Research has shown that various signaling pathways, such as Notch, SHH, TGF-ß, Wnt, STAT3, AKT, and EGFR, are involved in regulating PCSC proliferation, migration, and invasion. Additionally, non-coding RNAs, such as long ncRNAs and miRNAs, have emerged as critical regulators of PCSC pathogenesis and drug resistance. Here, we highlight that targeting these pathways could offer new opportunities for the management of PCa. This review summarizes the current knowledge surrounding the essential signaling pathways implicated in PCSC tumorigenesis and invasiveness.

18.
Curr Mol Med ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38859784

RESUMO

MicroRNAs (miRNAs) have emerged as crucial regulators of gene expression, playing pivotal roles in various biological processes, including cancer development and progression. Among them, miR-125b has garnered significant attention due to its multifaceted functional roles in human hepatocellular carcinoma (HCC). Extensive research has revealed that miR-125b plays a dual role in HCC, acting as both a tumor suppressor and an oncogene depending on the context. As a tumor suppressor, miR-125b exerts its inhibitory effects on HCC by targeting key oncogenic pathways and genes involved in cell proliferation, migration, invasion, and angiogenesis. Its downregulation in HCC is frequently observed and correlates with aggressive tumor characteristics and poor prognosis. Conversely, miR-125b can also function as an oncogene in specific HCC subtypes or under certain conditions. It has been shown to promote HCC growth, metastasis, and therapeutic resistance by targeting tumor suppressor genes, modulating the epithelial-mesenchymal transition (EMT) process, and enhancing cancer stem cell-like properties. The upregulation of miR-125b in HCC has been associated with advanced disease stages and unfavorable clinical outcomes. Furthermore, the dysregulation of miR-125b expression in HCC is influenced by a complex network of regulatory mechanisms. Understanding these regulatory mechanisms is crucial for deciphering the precise functional roles of miR-125b in HCC and exploring its potential as a diagnostic biomarker or therapeutic target. In the current review study, we comprehensively elucidated the diverse functional roles of miR-125b in HCC, providing a comprehensive overview of its regulatory mechanisms and impact on key cellular processes involved in HCC progression.

19.
Curr Mol Med ; 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39421983

RESUMO

Thyroid cancer is the most prevalent form of endocrine cancer. Therefore, the administration of new therapeutic agents for thyroid cancer patients is necessary. One of the recent successes in thyroid cancer research is the identification of the role of signaling pathways in the pathogenesis of the disease. Emerging evidence reveals that long non-coding RNAs (lncRNAs) can serve as novel therapeutic approaches for the diagnosis and treatment of thyroid cancer. The lncRNA metastasis-associated lung adenocarcinoma transcript-1 (MALAT1) plays key roles in gene expression, RNA processing, and epigenetic regulation. It is believed that MALAT1 can regulate several cancer-related processes, including tumour cell growth, proliferation, and metastasis. MALAT1 is involved in the pathogenesis of thzroid cancers by targeting multiple downstream targets and miRNA/mRNA axes. Here, we summarize the emerging roles of MALAT1 in this cancer.

20.
Cells ; 13(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38334666

RESUMO

A disturbance of the structure of the aortic wall results in the formation of aortic aneurysm, which is characterized by a significant bulge on the vessel surface that may have consequences, such as distention and finally rupture. Abdominal aortic aneurysm (AAA) is a major pathological condition because it affects approximately 8% of elderly men and 1.5% of elderly women. The pathogenesis of AAA involves multiple interlocking mechanisms, including inflammation, immune cell activation, protein degradation and cellular malalignments. The expression of inflammatory factors, such as cytokines and chemokines, induce the infiltration of inflammatory cells into the wall of the aorta, including macrophages, natural killer cells (NK cells) and T and B lymphocytes. Protein degradation occurs with a high expression not only of matrix metalloproteinases (MMPs) but also of neutrophil gelatinase-associated lipocalin (NGAL), interferon gamma (IFN-γ) and chymases. The loss of extracellular matrix (ECM) due to cell apoptosis and phenotype switching reduces tissue density and may contribute to AAA. It is important to consider the key mechanisms of initiating and promoting AAA to achieve better preventative and therapeutic outcomes.


Assuntos
Aneurisma da Aorta Abdominal , Masculino , Humanos , Feminino , Idoso , Aneurisma da Aorta Abdominal/metabolismo , Aorta/metabolismo , Citocinas/metabolismo , Fenótipo , Apoptose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA