Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 10(5): e1004089, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24788600

RESUMO

Nasal colonization is a major risk factor for S. aureus infections. The mechanisms responsible for colonization are still not well understood and involve several factors on the host and the bacterial side. One key factor is the cell wall teichoic acid (WTA) of S. aureus, which governs direct interactions with nasal epithelial surfaces. We report here the first receptor for the cell wall glycopolymer WTA on nasal epithelial cells. In several assay systems this type F-scavenger receptor, termed SREC-I, bound WTA in a charge dependent manner and mediated adhesion to nasal epithelial cells in vitro. The impact of WTA and SREC-I interaction on epithelial adhesion was especially pronounced under shear stress, which resembles the conditions found in the nasal cavity. Most importantly, we demonstrate here a key role of the WTA-receptor interaction in a cotton rat model of nasal colonization. When we inhibited WTA mediated adhesion with a SREC-I antibody, nasal colonization in the animal model was strongly reduced at the early onset of colonization. More importantly, colonization stayed low over an extended period of 6 days. Therefore we propose targeting of this glycopolymer-receptor interaction as a novel strategy to prevent or control S. aureus nasal colonization.


Assuntos
Aderência Bacteriana/genética , Células Epiteliais/microbiologia , Cavidade Nasal/microbiologia , Receptores Depuradores Classe F/fisiologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/fisiologia , Ácidos Teicoicos/metabolismo , Animais , Células CHO , Parede Celular/metabolismo , Células Cultivadas , Cricetinae , Cricetulus , Interações Hospedeiro-Patógeno/genética , Humanos , Ratos , Receptores Depuradores Classe F/metabolismo , Sigmodontinae , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia
2.
Cell Microbiol ; 17(2): 241-53, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25224994

RESUMO

Disseminated gonococcal infection (DGI) is a rare but serious complication caused by the spread of Neisseria gonorrhoeae in the human host. Gonococci associated with DGI mainly express the outer membrane protein PorBIA that binds to the scavenger receptor expressed on endothelial cells (SREC-I) and mediates bacterial uptake. We recently demonstrated that this interaction relies on intact membrane rafts that acquire SREC-I upon attachment of gonococci and initiates the signalling cascade that finally leads to the uptake of gonococci in epithelial cells. In this study, we analysed the role of sphingomyelinases and their breakdown product ceramide. Gonococcal infection induced increased levels of ceramide that was enriched at bacterial attachment sites. Interestingly, neutral but not acid sphingomyelinase was mandatory for PorBIA -mediated invasion into host cells. Neutral sphingomyelinase was required to recruit the PI3 kinase to caveolin and thereby activates the PI3 kinase-dependent downstream signalling leading to bacterial uptake. Thus, this study elucidates the initial signalling processes of bacterial invasion during DGI and demonstrates a novel role for neutral sphingomyelinase in the course of bacterial infections.


Assuntos
Endocitose , Interações Hospedeiro-Patógeno , Neisseria gonorrhoeae/fisiologia , Porinas/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Animais , Células Cultivadas , Ceramidas/metabolismo , Humanos , Transdução de Sinais
3.
Nucleic Acids Res ; 42(16): 10579-95, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25143534

RESUMO

The WHO has recently classified Neisseria gonorrhoeae as a super-bacterium due to the rapid spread of antibiotic resistant derivatives and an overall dramatic increase in infection incidences. Genome sequencing has identified potential genes, however, little is known about the transcriptional organization and the presence of non-coding RNAs in gonococci. We performed RNA sequencing to define the transcriptome and the transcriptional start sites of all gonococcal genes and operons. Numerous new transcripts including 253 potentially non-coding RNAs transcribed from intergenic regions or antisense to coding genes were identified. Strikingly, strong antisense transcription was detected for the phase-variable opa genes coding for a family of adhesins and invasins in pathogenic Neisseria, that may have regulatory functions. Based on the defined transcriptional start sites, promoter motifs were identified. We further generated and sequenced a high density Tn5 transposon library to predict a core of 827 gonococcal essential genes, 133 of which have no known function. Our combined RNA-Seq and Tn-Seq approach establishes a detailed map of gonococcal genes and defines the first core set of essential gonococcal genes.


Assuntos
Genes Bacterianos , Neisseria gonorrhoeae/genética , Transcriptoma , Genes Essenciais , Regiões Promotoras Genéticas , RNA Antissenso/biossíntese , RNA não Traduzido/metabolismo , Riboswitch , Sítio de Iniciação de Transcrição
4.
PLoS Pathog ; 9(5): e1003373, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717204

RESUMO

Many pathogenic bacteria cause local infections but occasionally invade into the blood stream, often with fatal outcome. Very little is known about the mechanism underlying the switch from local to invasive infection. In the case of Neisseria gonorrhoeae, phase variable type 4 pili (T4P) stabilize local infection by mediating microcolony formation and inducing anti-invasive signals. Outer membrane porin PorB(IA), in contrast, is associated with disseminated infection and facilitates the efficient invasion of gonococci into host cells. Here we demonstrate that loss of pili by natural pilus phase variation is a prerequisite for the transition from local to invasive infection. Unexpectedly, both T4P-mediated inhibition of invasion and PorB(IA)-triggered invasion utilize membrane rafts and signaling pathways that depend on caveolin-1-Y14 phosphorylation (Cav1-pY14). We identified p85 regulatory subunit of PI3 kinase (PI3K) and phospholipase Cγ1 as new, exclusive and essential interaction partners for Cav1-pY14 in the course of PorBIA-induced invasion. Active PI3K induces the uptake of gonococci via a new invasion pathway involving protein kinase D1. Our data describe a novel route of bacterial entry into epithelial cells and offer the first mechanistic insight into the switch from local to invasive gonococcal infection.


Assuntos
Aderência Bacteriana , Caveolina 1/metabolismo , Fímbrias Bacterianas/metabolismo , Gonorreia/metabolismo , Neisseria gonorrhoeae/metabolismo , Transdução de Sinais , Caveolina 1/genética , Linhagem Celular , Fímbrias Bacterianas/genética , Gonorreia/genética , Humanos , Microdomínios da Membrana/genética , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/microbiologia , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/patogenicidade , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo
5.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 6): 1779-89, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24914988

RESUMO

Outer membrane protein (OMP) biogenesis is an essential process for maintaining the bacterial cell envelope and involves the ß-barrel assembly machinery (BAM) for OMP recognition, folding and assembly. In Escherichia coli this function is orchestrated by five proteins: the integral outer membrane protein BamA of the Omp85 superfamily and four associated lipoproteins. To unravel the mechanism underlying OMP folding and insertion, the structure of the E. coli BamA ß-barrel and P5 domain was determined at 3 Šresolution. These data add information beyond that provided in the recently published crystal structures of BamA from Haemophilus ducreyi and Neisseria gonorrhoeae and are a valuable basis for the interpretation of pertinent functional studies. In an `open' conformation, E. coli BamA displays a significant degree of flexibility between P5 and the barrel domain, which is indicative of a multi-state function in substrate transfer. E. coli BamA is characterized by a discontinuous ß-barrel with impaired ß1-ß16 strand interactions denoted by only two connecting hydrogen bonds and a disordered C-terminus. The 16-stranded barrel surrounds a large cavity which implies a function in OMP substrate binding and partial folding. These findings strongly support a mechanism of OMP biogenesis in which substrates are partially folded inside the barrel cavity and are subsequently released laterally into the lipid bilayer.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos
6.
Biochem J ; 449(3): 631-42, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23095086

RESUMO

The outer membrane of Gram-negative bacteria contains a large number of channel-forming proteins, porins, for the uptake of small nutrient molecules. Neisseria gonorrhoeae PorBIA (PorB of serotype A) are associated with disseminating diseases and mediate a rapid bacterial invasion into host cells in a phosphate-sensitive manner. To gain insights into this structure-function relationship we analysed PorBIA by X-ray crystallography in the presence of phosphate and ATP. The structure of PorBIA in the complex solved at a resolution of 3.3 Å (1 Å=0.1 nm) displays a surplus of positive charges inside the channel. ATP ligand-binding in the channel is co-ordinated by the positively charged residues of the channel interior. These residues ligate the aromatic, sugar and pyrophosphate moieties of the ligand. Two phosphate ions were observed in the structure, one of which clamped by two arginine residues (Arg92 and Arg124) localized at the extraplasmic channel exit. A short ß-bulge in ß2-strand together with the long L3 loop narrow the barrel diameter significantly and further support substrate specificity through hydrogen bond interactions. Interestingly the structure also comprised a small peptide as a remnant of a periplasmic protein which physically links porin molecules to the peptidoglycan network. To test the importance of Arg92 on bacterial invasion the residue was mutated. In vivo assays of bacteria carrying a R92S mutation confirmed the importance of this residue for host-cell invasion. Furthermore systematic sequence and structure comparisons of PorBIA from Neisseriaceae indicated Arg92 to be unique in disseminating N. gonorrhoeae thereby possibly distinguishing invasion-promoting porins from other neisserial porins.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Neisseria gonorrhoeae/metabolismo , Porinas/química , Porinas/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular , Cristalografia por Raios X , DNA Bacteriano/genética , Interações Hospedeiro-Patógeno , Humanos , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/patogenicidade , Peptidoglicano/metabolismo , Fosfatos/metabolismo , Porinas/genética , Conformação Proteica , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Virulência/genética , Virulência/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA