Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 323(4): H763-H773, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36018757

RESUMO

Cardiac arrhythmias are associated with cardiovascular morbidity and mortality. Cardiac electrophysiology studies (EPS) use intracardiac catheter recording and stimulation for profound evaluation of the heart's electrical properties. The main clinical application is investigation and treatment of rhythm disorders. These techniques have been translated to the murine setting to open opportunities for detailed evaluation of the impact of different characteristics (including genetics) and interventions on cardiac electrophysiology and -pathology. Currently, a detailed description of the technique of murine transjugular EPS (which is the standard route of catheter introduction) is lacking. This article provides detailed information on EPS in mice via the transjugular route. This includes catheter placement, stimulation protocols, intracardiac tracing interpretation, artifact reduction, and surface ECG recording. In addition, reference values as obtained in C57BL/6N mice are presented for common electrophysiological parameters. This detailed methodological description aims to increase accessibility and standardization of EPS in mice. Ultimately, also human research and patient care may benefit from translation of the knowledge obtained in preclinical models using this technique.NEW & NOTEWORTHY Electrophysiology studies (EPS) allow in-depth evaluation of cardiac electrophysiology and -pathology. These techniques have been adapted to the murine setting for (translational) studies, mainly focusing on arrhythmogenesis. Despite the frequent application of EPS via the transjugular route, a thorough description of the technique is currently lacking. This article aims to function as a comprehensive guide, also elaborating (for the first time) on nonsurgical aspects such as catheter positioning, tracing artifacts, stimulation protocols, and reference values.


Assuntos
Arritmias Cardíacas , Técnicas Eletrofisiológicas Cardíacas , Animais , Eletrocardiografia , Técnicas Eletrofisiológicas Cardíacas/métodos , Coração , Humanos , Camundongos , Camundongos Endogâmicos C57BL
2.
Exerc Immunol Rev ; 27: 84-124, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33965901

RESUMO

BACKGROUND: Toll-like receptors (TLRs) are a family of transmembrane pattern recognition receptors that are mainly expressed on immune cells. Recognition of various exogenous and endogenous molecular patterns activates the TLR signalling cascade, which orchestrates an inflammatory immune response. Dysfunctional immune responses, including aberrant TLR signalling, are increasingly implicated in the associations between sedentarism, chronic low-grade systemic inflammation and various non-communicable diseases. Conversely, exercise exerts anti-inflammatory effects, which could be conferred through its immunomodulatory properties, potentially affecting TLRs. This study aims to systematically review the effects of exercise on human TLR expression. METHOD: A systematic literature search of Pubmed, Embase, The Cochrane Library and SPORTDiscus for articles addressing the impact of exercise (as isolated intervention) on TLRs in humans was conducted, ending in February 2020. RESULTS: A total of 66 articles were included. The publications were categorised according to exercise modality and duration: acute resistance exercise (4 studies), acute aerobic exercise (26 studies), resistance training program (9 studies), aerobic training program (16 studies), combined (i.e. resistance and aerobic) training program (8 studies) and chronic exercise not otherwise classifiable (9 studies). Five articles investigated more than one of the aforementioned exercise categories. Several trends could be discerned with regard to the TLR response in the different exercise categories. Acute resistance exercise seemed to elicit TLR upregulation, whereas acute aerobic exercise had less activating potential with the majority of responses being neutral or, especially in healthy participants, downregulatory. Chronic resistance and combined exercise programs predominantly resulted in unaltered or decreased TLR levels. In the chronic aerobic exercise category, mixed effects were observed, but the majority of measurements demonstrated unchanged TLR expression. CONCLUSION: Currently published research supports an interplay between exercise and TLR signalling, which seems to depend on the characteristics of the exercise. However, there was large heterogeneity in the study designs and methodologies. Therefore, additional research is required to further corroborate these findings, to define its pathophysiological implications and to elucidate the mechanism(s) linking exercise to TLR signalling.


Assuntos
Exercício Físico , Treinamento Resistido , Receptores Toll-Like , Humanos , Receptores de Reconhecimento de Padrão , Transdução de Sinais
3.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34884612

RESUMO

Clinical and animal studies have demonstrated that chemotherapeutic doxorubicin (DOX) increases arterial stiffness, a predictor of cardiovascular risk. Despite consensus about DOX-impaired endothelium-dependent vasodilation as a contributing mechanism, some studies have reported conflicting results on vascular smooth muscle cell (VSMC) function after DOX treatment. The present study aimed to investigate the effects of DOX on VSMC function. To this end, mice received a single injection of 4 mg DOX/kg, or mouse aortic segments were treated ex vivo with 1 µM DOX, followed by vascular reactivity evaluation 16 h later. Phenylephrine (PE)-induced VSMC contraction was decreased after DOX treatment. DOX did not affect the transient PE contraction dependent on Ca2+ release from the sarcoplasmic reticulum (0 mM Ca2+), but it reduced the subsequent tonic phase characterised by Ca2+ influx. These findings were supported by similar angiotensin II and attenuated endothelin-1 contractions. The involvement of voltage-gated Ca2+ channels in DOX-decreased contraction was excluded by using levcromakalim and diltiazem in PE-induced contraction and corroborated by similar K+ and serotonin contractions. Despite the evaluation of multiple blockers of transient receptor potential channels, the exact mechanism for DOX-decreased VSMC contraction remains elusive. Surprisingly, DOX reduced ex vivo but not in vivo arterial stiffness, highlighting the importance of appropriate timing for evaluating arterial stiffness in DOX-treated patients.


Assuntos
Cálcio/metabolismo , Doxorrubicina/toxicidade , Endotélio Vascular/patologia , Contração Muscular , Músculo Liso Vascular/patologia , Rigidez Vascular/efeitos dos fármacos , Vasoconstrição , Animais , Antibióticos Antineoplásicos/toxicidade , Canais de Cálcio/metabolismo , Endotélio Vascular/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/efeitos dos fármacos
4.
J Anat ; 232(3): 485-496, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29205328

RESUMO

Cirrhosis represents the end-stage of any persistent chronically active liver disease. It is characterized by the complete replacement of normal liver tissue by fibrosis, regenerative nodules, and complete fibrotic vascularized septa. The resulting angioarchitectural distortion contributes to an increasing intrahepatic vascular resistance, impeding liver perfusion and leading to portal hypertension. To date, knowledge on the dynamically evolving pathological changes of the hepatic vasculature during cirrhogenesis remains limited. More specifically, detailed anatomical data on the vascular adaptations during disease development is lacking. To address this need, we studied the 3D architecture of the hepatic vasculature during induction of cirrhogenesis in a rat model. Cirrhosis was chemically induced with thioacetamide (TAA). At predefined time points, the hepatic vasculature was fixed and visualized using a combination of vascular corrosion casting and deep tissue microscopy. Three-dimensional reconstruction and data-fitting enabled cirrhogenic features to extracted at multiple scales, portraying the impact of cirrhosis on the hepatic vasculature. At the macrolevel, we noticed that regenerative nodules severely compressed pliant venous vessels from 12 weeks of TAA intoxication onwards. Especially hepatic veins were highly affected by this compression, with collapsed vessel segments severely reducing perfusion capabilities. At the microlevel, we discovered zone-specific sinusoidal degeneration, with sinusoids located near the surface being more affected than those in the middle of a liver lobe. Our data shed light on and quantify the evolving angioarchitecture during cirrhogenesis. These findings may prove helpful for future targeted invasive interventions.


Assuntos
Vasos Sanguíneos/patologia , Cirrose Hepática/patologia , Fígado/irrigação sanguínea , Animais , Imageamento Tridimensional/métodos , Masculino , Ratos , Ratos Wistar
5.
J Anat ; 230(3): 471-483, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27995631

RESUMO

The intricate (micro)vascular architecture of the liver has not yet been fully unravelled. Although current models are often idealized simplifications of the complex anatomical reality, correct morphological information is instrumental for scientific and clinical purposes. Previously, both vascular corrosion casting (VCC) and immunohistochemistry (IHC) have been separately used to study the hepatic vasculature. Nevertheless, these techniques still face a number of challenges such as dual casting in VCC and limited imaging depths for IHC. We have optimized both techniques and combined their complementary strengths to develop a framework for multilevel reconstruction of the hepatic circulation in the rat. The VCC and micro-CT scanning protocol was improved by enabling dual casting, optimizing the contrast agent concentration, and adjusting the viscosity of the resin (PU4ii). IHC was improved with an optimized clearing technique (CUBIC) that extended the imaging depth for confocal microscopy more than five-fold. Using in-house developed software (DeLiver), the vascular network - in both VCC and IHC datasets - was automatically segmented and/or morphologically analysed. Our methodological framework allows 3D reconstruction and quantification of the hepatic circulation, ranging from the major blood vessels down to the intertwined and interconnected sinusoids. We believe that the presented framework will have value beyond studies of the liver, and will facilitate a better understanding of various parenchymal organs in general, in physiological and pathological circumstances.


Assuntos
Molde por Corrosão/métodos , Imageamento Tridimensional/métodos , Imuno-Histoquímica/métodos , Fígado/irrigação sanguínea , Microtomografia por Raio-X/métodos , Animais , Masculino , Modelos Anatômicos , Modelos Animais , Ratos , Ratos Wistar
6.
Sci Rep ; 14(1): 12653, 2024 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825590

RESUMO

Nonischaemic myocardial fibrosis is associated with cardiac dysfunction, malignant arrhythmias and sudden cardiac death. In the absence of a specific aetiology, its finding as late gadolinium enhancement (LGE) on cardiac magnetic resonance imaging is often attributed to preceding viral myocarditis. Athletes presenting with ventricular arrhythmias often have nonischaemic LGE. Previous studies have demonstrated an adverse effect of exercise on the course of acute viral myocarditis. In this study, we have investigated, for the first time, the impact of endurance training on longer-term outcomes such as myocardial fibrosis and arrhythmogenicity in a murine coxsackievirus B3 (CVB)-induced myocarditis model. Male C57BL/6J mice (n = 72) were randomly assigned to 8 weeks of forced treadmill running (EEX) or no exercise (SED). Myocarditis was induced 2 weeks later by a single intraperitoneal injection with CVB, versus vehicle in the controls (PBS). In a separate study, mice (n = 30) were subjected to pretraining for 13 weeks (preEEX), without continuation of exercise during myocarditis. Overall, continuation of exercise resulted in a milder clinical course of viral disease, with less weight loss and better preserved running capacity. CVB-EEX and preEEX-CVB mice tended to have a lower mortality rate. At sacrifice (i.e. 6 weeks after inoculation), the majority of virus was cleared from the heart. Histological assessment demonstrated prominent myocardial inflammatory infiltration and cardiomyocyte loss in both CVB groups. Inflammatory lesions in the CVB-EEX group contained higher numbers of pro-inflammatory cells (iNOS-reactive macrophages and CD8+ T lymphocytes) compared to these in CVB-SED. Treadmill running during myocarditis increased interstitial fibrosis [82.4% (CVB-EEX) vs. 56.3% (CVB-SED); P = 0.049]. Additionally, perivascular and/or interstitial fibrosis with extensive distribution was more likely to occur with exercise [64.7% and 64.7% (CVB-EEX) vs. 50% and 31.3% (CVB-SED); P = 0.048]. There was a numerical, but not significant, increase in the number of scars per cross-section (1.9 vs. 1.2; P = 0.195), with similar scar distribution and histological appearance in CVB-EEX and CVB-SED. In vivo electrophysiology studies did not induce sustained monomorphic ventricular tachycardia, only nonsustained (usually polymorphic) runs. Their cumulative beat count and duration paralleled the increased fibrosis between CVB-EEX and CVB-SED, but the difference was not significant (P = 0.084 for each). Interestingly, in mice that were subjected to pretraining only without continuation of exercise during myocarditis, no differences between pretrained and sedentary mice were observed at sacrifice (i.e. 6 weeks after inoculation and training cessation) with regard to myocardial inflammation, fibrosis, and ventricular arrhythmogenicity. In conclusion, endurance exercise during viral myocarditis modulates the inflammatory process with more pro-inflammatory cells and enhances perivascular and interstitial fibrosis development. The impact on ventricular arrhythmogenesis requires further exploration.


Assuntos
Arritmias Cardíacas , Infecções por Coxsackievirus , Modelos Animais de Doenças , Enterovirus Humano B , Fibrose , Camundongos Endogâmicos C57BL , Miocardite , Condicionamento Físico Animal , Animais , Miocardite/virologia , Miocardite/patologia , Masculino , Camundongos , Arritmias Cardíacas/etiologia , Infecções por Coxsackievirus/patologia , Infecções por Coxsackievirus/complicações , Miocárdio/patologia , Treino Aeróbico
7.
Front Cardiovasc Med ; 11: 1372028, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628312

RESUMO

Introduction: High rates of cardiac involvement were reported in the beginning of the coronavirus disease 2019 (COVID-19) pandemic. This led to anxiety in the athletic population. The current study was set up to assess the prevalence of myocardial fibrosis and ventricular arrhythmias in recreational athletes with the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Methods: Consecutive adult recreational athletes (≥18 years old, ≥4 h of mixed type or endurance sports/week) underwent systematic cardiac evaluation after a prior confirmed COVID-19 infection. Evaluation included clinical history, electrocardiogram (ECG), 5-day Holter monitoring, and cardiac magnetic resonance (CMR) imaging with simultaneous measurement of high-sensitive cardiac Troponin I. Data from asymptomatic or mildly symptomatic athletes (Group 1) were compared with those with moderate to severe symptoms (Groups 2-3). Furthermore, a comparison with a historical control group of athletes without COVID-19 (Master@Heart) was made. Results: In total, 35 athletes (18 Group 1, 10 female, 36.9 ± 2.2 years, mean 143 ± 20 days following diagnosis) were evaluated. The baseline characteristics for the Group 1 and Groups 2-3 athletes were similar. None of the athletes showed overt myocarditis on CMR based on the updated Lake Louise criteria for diagnosis of myocarditis. The prevalence of non-ischemic late gadolinium enhancement [1 (6%) Group 1 vs. 2 (12%) Groups 2-3; p = 0.603] or ventricular arrhythmias [1 Group 1 athlete showed non-sustained ventricular tachycardia (vs. 0 in Groups 2-3: p = 1.000)] were not statistically different between the groups. When the male athletes were compared with the Master@Heart athletes, again no differences regarding these criteria were found. Conclusion: In our series of recreational athletes with prior confirmed COVID-19, we found no evidence of ongoing myocarditis, and no more detection of fibrosis or ventricular arrhythmias than in a comparable athletic pre-COVID cohort. This points to a much lower cardiac involvement of COVID-19 in athletes than originally suggested.

8.
Cardiovasc Pathol ; 72: 107652, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38750778

RESUMO

BACKGROUND AND AIMS: Viral infections are the leading cause of myocarditis. Besides acute cardiac complications, late-stage sequelae such as myocardial fibrosis may develop, importantly impacting the prognosis. Coxsackievirus B3 (CVB)-induced myocarditis in mice is the most commonly used translational model to study viral myocarditis and has provided the majority of our current understanding of the disease pathophysiology. Nevertheless, the late stages of disease, encompassing fibrogenesis and arrhythmogenesis, have been underappreciated in viral myocarditis research to date. The present study investigated the natural history of CVB-induced myocarditis in C57BL/6J mice, expanding the focus beyond the acute phase of disease. In addition, we studied the impact of sex and inoculation dose on the disease course. METHODS AND RESULTS: C57BL/6J mice (12 weeks old; n=154) received a single intraperitoneal injection with CVB to induce viral myocarditis, or vehicle (PBS) as control. Male mice (n=92) were injected with 5 × 105 (regular dose) (RD) or 5 × 106 (high dose) (HD) plaque-forming units of CVB, whereas female mice received the RD only. Animals were sacrificed 1, 2, 4, 8, and 11 weeks after CVB or PBS injection. Virally inoculated mice developed viral disease with a temporary decline in general condition and weight loss, which was less pronounced in female animals (P<.001). In male CVB mice, premature mortality occurred between days 8 and 23 after inoculation (RD: 21%, HD: 20%), whereas all female animals survived. Over the course of disease, cardiac inflammation progressively subsided, with faster resolution in female mice. There were no substantial group differences in the composition of the inflammatory cell infiltrates: predominance of cytotoxic T cells at day 7 and 14, and a switch from arginase1-reactive macrophages to iNOS-reactive macrophages from day 7 to 14 were the main findings. There was concomitant development and maturation of different patterns of myocardial fibrosis, with enhanced fibrogenesis in male mice. Virus was almost completely cleared from the heart by day 14. Serum biomarkers of cardiac damage and cardiac expression of remodeling genes were temporarily elevated during the acute phase of disease. Cardiac CTGF gene upregulation was less prolonged in female CVB animals. In vivo electrophysiology studies at weeks 8 and 11 demonstrated that under baseline conditions (i.e. in the absence of proarrhythmogenic drugs), ventricular arrhythmias could only be induced in CVB animals. The cumulative arrhythmia burden throughout the entire stimulation protocol was not significantly different between CVB and control groups. CONCLUSION: CVB inoculation in C57BL/6J mice represents a model of acute self-limiting viral myocarditis, with progression to different patterns of myocardial fibrosis. Sex, but not inoculation dose, seems to modulate the course of disease.

9.
Front Oncol ; 13: 1158124, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37197431

RESUMO

Unprecedented immunization campaigns have been rolled out worldwide in an attempt to contain the ongoing COVID-19 pandemic. Multiple vaccines were brought to the market, among two utilizing novel messenger ribonucleic acid technology. Despite their undisputed success in decreasing COVID-19-associated hospitalizations and mortality, various adverse events have been reported. The emergence of malignant lymphoma is one of such rare adverse events that has raised concern, although an understanding of the mechanisms potentially involved remains lacking. Herein, we present the first case of B-cell lymphoblastic lymphoma following intravenous high-dose mRNA COVID-19 vaccination (BNT162b2) in a BALB/c mouse. Two days following booster vaccination (i.e., 16 days after prime), at only 14 weeks of age, our animal suffered spontaneous death with marked organomegaly and diffuse malignant infiltration of multiple extranodal organs (heart, lung, liver, kidney, spleen) by lymphoid neoplasm. Immunohistochemical examination revealed organ sections positive for CD19, terminal deoxynucleotidyl transferase, and c-MYC, compatible with a B-cell lymphoblastic lymphoma immunophenotype. Our murine case adds to previous clinical reports on malignant lymphoma development following novel mRNA COVID-19 vaccination, although a demonstration of direct causality remains difficult. Extra vigilance is required, with conscientious reporting of similar cases and a further investigation of the mechanisms of action explaining the aforementioned association.

10.
PLoS One ; 18(11): e0294848, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38015959

RESUMO

Apart from cardiotoxicity, the chemotherapeutic agent doxorubicin (DOX) provokes acute and long-term vascular toxicity. Dexrazoxane (DEXRA) is an effective drug for treatment of DOX-induced cardiotoxicity, yet it remains currently unknown whether DEXRA prevents vascular toxicity associated with DOX. Accordingly, the present study aimed to evaluate the protective potential of DEXRA against DOX-related vascular toxicity in a previously-established in vivo and ex vivo model of vascular dysfunction induced by 16 hour (h) DOX exposure. Vascular function was evaluated in the thoracic aorta in organ baths, 16h after administration of DOX (4 mg/kg) or DOX with DEXRA (40 mg/kg) to male C57BL6/J mice. In parallel, vascular reactivity was evaluated after ex vivo incubation (16h) of murine aortic segments with DOX (1 µM) or DOX with DEXRA (10 µM). In both in vivo and ex vivo experiments, DOX impaired acetylcholine-stimulated endothelium-dependent vasodilation. In the ex vivo setting, DOX additionally attenuated phenylephrine-elicited vascular smooth muscle cell (VSMC) contraction. Importantly, DEXRA failed to prevent DOX-induced endothelial dysfunction and hypocontraction. Furthermore, RT-qPCR and Western blotting showed that DOX decreased the protein levels of topoisomerase-IIß (TOP-IIß), a key target of DEXRA, in the heart, but not in the aorta. Additionally, the effect of N-acetylcysteine (NAC, 10 µM), a reactive oxygen species (ROS) scavenger, was evaluated ex vivo. NAC did not prevent DOX-induced impairment of acetylcholine-stimulated vasodilation. In conclusion, our results show that DEXRA fails to prevent vascular toxicity resulting from 16h DOX treatment. This may relate to DOX provoking vascular toxicity in a ROS- and TOP-IIß-independent way, at least in the evaluated acute setting. However, it is important to mention that these findings only apply to the acute (16h) treatment period, and further research is warranted to delineate the therapeutic potential of DEXRA against vascular toxicity associated with longer-term repetitive DOX dosing.


Assuntos
Dexrazoxano , Camundongos , Animais , Masculino , Dexrazoxano/farmacologia , Dexrazoxano/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/metabolismo , Acetilcolina/metabolismo , Doxorrubicina/toxicidade , Doxorrubicina/metabolismo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Antibióticos Antineoplásicos/farmacologia
11.
Cardiovasc Res ; 119(15): 2579-2590, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-37625456

RESUMO

AIMS: Apart from cardiotoxicity, the chemotherapeutic doxorubicin (DOX) induces vascular toxicity, represented by arterial stiffness and endothelial dysfunction. Both parameters are of interest for cardiovascular risk stratification as they are independent predictors of future cardiovascular events in the general population. However, the time course of DOX-induced cardiovascular toxicity remains unclear. Moreover, current biomarkers for cardiovascular toxicity prove insufficient. Here, we longitudinally evaluated functional and molecular markers of DOX-induced cardiovascular toxicity in a murine model. Molecular markers were further validated in patient plasma. METHODS AND RESULTS: DOX (4 mg/kg) or saline (vehicle) was administered intra-peritoneally to young, male mice weekly for 6 weeks. In vivo cardiovascular function and ex vivo arterial stiffness and vascular reactivity were evaluated at baseline, during DOX therapy (Weeks 2 and 4) and after therapy cessation (Weeks 6, 9, and 15). Left ventricular ejection fraction (LVEF) declined from Week 4 in the DOX group. DOX increased arterial stiffness in vivo and ex vivo at Week 2, which reverted thereafter. Importantly, DOX-induced arterial stiffness preceded reduced LVEF. Further, DOX impaired endothelium-dependent vasodilation at Weeks 2 and 6, which recovered at Weeks 9 and 15. Conversely, contraction with phenylephrine was consistently higher in the DOX-treated group. Furthermore, proteomic analysis on aortic tissue identified increased thrombospondin-1 (THBS1) and alpha-1-antichymotrypsin (SERPINA3) at Weeks 2 and 6. Up-regulated THBS1 and SERPINA3 persisted during follow-up. Finally, THBS1 and SERPINA3 were quantified in plasma of patients. Cancer survivors with anthracycline-induced cardiotoxicity (AICT; LVEF < 50%) showed elevated THBS1 and SERPINA3 levels compared with age-matched control patients (LVEF ≥ 60%). CONCLUSIONS: DOX increased arterial stiffness and impaired endothelial function, which both preceded reduced LVEF. Vascular dysfunction restored after DOX therapy cessation, whereas cardiac dysfunction persisted. Further, we identified SERPINA3 and THBS1 as promising biomarkers of DOX-induced cardiovascular toxicity, which were confirmed in AICT patients.


Assuntos
Cardiotoxicidade , Proteômica , Humanos , Masculino , Camundongos , Animais , Cardiotoxicidade/tratamento farmacológico , Volume Sistólico , Função Ventricular Esquerda , Doxorrubicina/toxicidade , Biomarcadores
12.
Health Sci Rep ; 5(6): e929, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36425900

RESUMO

Background and Aims: The goal of the present study was to systematically evaluate the effect of a booster vaccination with the BNT162b2 messenger RNA (mRNA; Pfizer-BioNTech®) vaccine on maximum oxygen uptake (VO2 max), potential signs of (peri)myocarditis, and sports participation. Methods: Recreational athletes who were scheduled to undergo booster vaccination were evaluated with transthoracic echocardiography, serum measurements of high-sensitivity C-reactive protein(hsCRP) and high-sensitivity troponin I, and a bicycle cardiopulmonary exercise test (CPET) with serum lactate evaluation before the booster vaccine administration. Seven days postvaccination the test battery was repeated. Additionally, the subjects were asked to fill in a questionnaire on side effects and a subjective evaluation of their relative training volume and intensity as compared to the weeks before vaccination. Results: A group of 42 analysed athletes showed a statistically significant 2.7% decrease in VO2 max after vaccination (mean standard error of mean pre: 48.6 (1.4) ml/kg/min; post: 47.3 (1.4) ml/kg/min; p = 0.004). A potentially clinically relevant decrease of 8.6% or more occurred in 8 (19%) athletes. Other CPET parameters and lactate curves were comparable. We found no serological or echocardiographic evidence of (peri)myocarditis. A slight but significant increase in hsCRP was noted 1 week after vaccination. Side effects were mild and sports participation was generally unchanged or mildly decreased after vaccination. Conclusion: In our population of recreational endurance athletes, booster vaccination with the BNT162b2 mRNA vaccine resulted in a statistically significant decrease in VO2max 7 days after vaccination. The clinical impact hereof needs to be further determined. No major adverse events were observed.

13.
Viruses ; 13(6)2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072044

RESUMO

Myocarditis is an inflammatory disease of the heart with viral infections being the most common aetiology. Its complex biology remains poorly understood and its clinical management is one of the most challenging in the field of cardiology. Toll-like receptors (TLRs), a family of evolutionarily conserved pattern recognition receptors, are increasingly known to be implicated in the pathophysiology of viral myocarditis. Their central role in innate and adaptive immune responses, and in the inflammatory reaction that ensues, indeed makes them prime candidates to profoundly affect every stage of the disease process. This review describes the pathogenesis and pathophysiology of viral myocarditis, and scrutinises the role of TLRs in every phase. We conclude with directions for future research in this field.


Assuntos
Imunidade Inata , Inflamação/virologia , Miocardite/imunologia , Miocardite/virologia , Miocárdio/patologia , Receptores Toll-Like/imunologia , Viroses/complicações , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Miocardite/complicações , Miocardite/etiologia , Receptores de Reconhecimento de Padrão , Viroses/imunologia
14.
Toxicol Lett ; 346: 23-33, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33895255

RESUMO

Arterial stiffness is an important predictor of cardiovascular risk. Clinical studies have demonstrated that arterial stiffness increases in cancer patients treated with the chemotherapeutic doxorubicin (DOX). However, the mechanisms of DOX-induced arterial stiffness remain largely unknown. This study aimed to evaluate artery stiffening in DOX-treated mice using in vivo and ex vivo techniques. Male C57BL/6J mice were treated for 2 weeks with 2 mg/kg (low dose) or 4 mg/kg (high dose) of DOX weekly. Arterial stiffness was assessed in vivo with ultrasound imaging (abdominal aorta pulse wave velocity (aaPWV)) and applanation tonometry (carotid-femoral PWV) combined with ex vivo vascular stiffness and reactivity evaluation. The high dose increased aaPWV, while cfPWV did not reach statistical significance. Phenylephrine (PE)-contracted aortic segments showed a higher Peterson's modulus (Ep) in the high dose group, while Ep did not differ when vascular smooth muscle cells (VSMCs) were relaxed by a NO donor (DEANO). In addition, aortic rings of DOX-treated mice showed increased PE contraction, decreased basal nitric oxide (NO) index and impaired acetylcholine-induced endothelium-dependent relaxation. DOX treatment contributed to endothelial cell loss and reduced endothelial nitric oxide synthase (eNOS) expression in the aorta. In conclusion, we have replicated DOX-induced arterial stiffness in a murine model and this aortic stiffness is driven by impaired endothelial function, contributing to increased vascular tone.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Doxorrubicina/toxicidade , Rigidez Vascular/efeitos dos fármacos , Animais , Aorta/efeitos dos fármacos , Aorta/patologia , Doxorrubicina/administração & dosagem , Redução da Medicação , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Vasodilatação/efeitos dos fármacos
15.
BMJ Case Rep ; 12(9)2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31488439

RESUMO

Benign gastrobronchial fistula (GBF) is a rare but potentially life-threatening complication of oesophagectomy for malignancy. We present a case of GBF post Ivor-Lewis surgery manifesting as pulmonary sepsis and type II respiratory failure. Clues to the diagnosis were persistent hypercapnia despite high minute ventilation, aspiration of gastric content through the endotracheal tube and accumulation of air in the nasogastric drainage bag. Flexible bronchoscopy confirmed the diagnosis. Surgical exploration identified necrosis of the proximal stomach as causative factor. Despite reconstruction of the oesophagogastric anastomosis and interposition of an intercostal muscle flap, the patient developed a new episode of type II respiratory failure. Bronchoscopy revealed in situ recurrence of the fistula. Patency of the fistula was proven through application of methylene blue with subsequent gastroscopy. A conservative, symptom-based, management was conducted. The patient died 6 hours later.


Assuntos
Fístula Brônquica/etiologia , Esofagectomia/efeitos adversos , Fístula Gástrica/etiologia , Adenocarcinoma/complicações , Adenocarcinoma/cirurgia , Idoso , Fístula Brônquica/cirurgia , Neoplasias Esofágicas/complicações , Neoplasias Esofágicas/cirurgia , Evolução Fatal , Feminino , Fístula Gástrica/cirurgia , Humanos , Insuficiência Respiratória/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA