Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35062536

RESUMO

The advancement in the domain of IoT accelerated the development of new communication technologies such as the Message Queuing Telemetry Transport (MQTT) protocol. Although MQTT servers/brokers are considered the main component of all MQTT-based IoT applications, their openness makes them vulnerable to potential cyber-attacks such as DoS, DDoS, or buffer overflow. As a result of this, an efficient intrusion detection system for MQTT-based applications is still a missing piece of the IoT security context. Unfortunately, existing IDSs do not provide IoT communication protocol support such as MQTT or CoAP to validate crafted or malformed packets for protecting the protocol implementation vulnerabilities of IoT devices. In this paper, we have designed and developed an MQTT parsing engine that can be integrated with network-based IDS as an initial layer for extensive checking against IoT protocol vulnerabilities and improper usage through a rigorous validation of packet fields during the packet-parsing stage. In addition, we evaluate the performance of the proposed solution across different reported vulnerabilities. The experimental results demonstrate the effectiveness of the proposed solution for detecting and preventing the exploitation of vulnerabilities on IoT protocols.

2.
Sensors (Basel) ; 21(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925813

RESUMO

The Internet of things (IoT) has emerged as a topic of intense interest among the research and industrial community as it has had a revolutionary impact on human life. The rapid growth of IoT technology has revolutionized human life by inaugurating the concept of smart devices, smart healthcare, smart industry, smart city, smart grid, among others. IoT devices' security has become a serious concern nowadays, especially for the healthcare domain, where recent attacks exposed damaging IoT security vulnerabilities. Traditional network security solutions are well established. However, due to the resource constraint property of IoT devices and the distinct behavior of IoT protocols, the existing security mechanisms cannot be deployed directly for securing the IoT devices and network from the cyber-attacks. To enhance the level of security for IoT, researchers need IoT-specific tools, methods, and datasets. To address the mentioned problem, we provide a framework for developing IoT context-aware security solutions to detect malicious traffic in IoT use cases. The proposed framework consists of a newly created, open-source IoT data generator tool named IoT-Flock. The IoT-Flock tool allows researchers to develop an IoT use-case comprised of both normal and malicious IoT devices and generate traffic. Additionally, the proposed framework provides an open-source utility for converting the captured traffic generated by IoT-Flock into an IoT dataset. Using the proposed framework in this research, we first generated an IoT healthcare dataset which comprises both normal and IoT attack traffic. Afterwards, we applied different machine learning techniques to the generated dataset to detect the cyber-attacks and protect the healthcare system from cyber-attacks. The proposed framework will help in developing the context-aware IoT security solutions, especially for a sensitive use case like IoT healthcare environment.


Assuntos
Internet das Coisas , Cidades , Segurança Computacional , Confidencialidade , Atenção à Saúde , Humanos
3.
Entropy (Basel) ; 23(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34828099

RESUMO

Global navigation satellite systems have been used for reliable location-based services in outdoor environments. However, satellite-based systems are not suitable for indoor positioning due to low signal power inside buildings and low accuracy of 5 m. Future smart homes demand low-cost, high-accuracy and low-power indoor positioning systems that can provide accuracy of less than 5 m and enable battery operation for mobility and long-term use. We propose and implement an intelligent, highly accurate and low-power indoor positioning system for smart homes leveraging Gaussian Process Regression (GPR) model using information-theoretic gain based on reduction in differential entropy. The system is based on Time Difference of Arrival (TDOA) and uses ultra-low-power radio transceivers working at 434 MHz. The system has been deployed and tested using indoor measurements for two-dimensional (2D) positioning. In addition, the proposed system provides dual functionality with the same wireless links used for receiving telemetry data, with configurable data rates of up to 600 Kbauds. The implemented system integrates the time difference pulses obtained from the differential circuitry to determine the radio frequency (RF) transmitter node positions. The implemented system provides a high positioning accuracy of 0.68 m and 1.08 m for outdoor and indoor localization, respectively, when using GPR machine learning models, and provides telemetry data reception of 250 Kbauds. The system enables low-power battery operation with consumption of <200 mW power with ultra-low-power CC1101 radio transceivers and additional circuits with a differential amplifier. The proposed system provides low-cost, low-power and high-accuracy indoor localization and is an essential element of public well-being in future smart homes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA