RESUMO
While Parkinson's disease remains clinically defined by cardinal motor symptoms resulting from nigrostriatal degeneration, it is now appreciated that the disease commonly consists of multiple pathologies, but it is unclear where these co-pathologies occur early in disease and whether they are responsible for the nigrostriatal degeneration. For the past number of years, we have been studying a well-characterized cohort of subjects with motor impairment that we have termed mild motor deficits. Motor deficits were determined on a modified and validated Unified Parkinson's Disease Rating Scale III but were insufficient in degree to diagnose Parkinson's disease. However, in our past studies, cases in this cohort had a selection bias, as both a clinical syndrome in between no motor deficits and Parkinson's disease, plus nigral Lewy pathology as defined post-mortem, were required for inclusion. Therefore, in the current study, we only based inclusion on the presence of a clinical phenotype with mild motor impairment insufficient to diagnose Parkinson's disease. Then, we divided this group further based upon whether or not subjects had a synucleinopathy in the nigrostriatal system. Here we demonstrate that loss of nigral dopaminergic neurons, loss of putamenal dopaminergic innervation and loss of the tyrosine hydroxylase-phenotype in the substantia nigra and putamen occur equally in mild motor deficit groups with and without nigral alpha-synuclein aggregates. Indeed, the common feature of these two groups is that both have similar degrees of AT8 positive phosphorylated tau, a pathology not seen in the nigrostriatal system of age-matched controls. These findings were confirmed with early (tau Ser208 phosphorylation) and late (tau Ser396/Ser404 phosphorylation) tau markers. This suggests that the initiation of nigrostriatal dopaminergic neurodegeneration occurs independently of alpha-synuclein aggregation and can be tau mediated.
Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Sinucleinopatias , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Transtornos Parkinsonianos/patologia , Sinucleinopatias/patologia , Putamen/metabolismo , Substância Negra/metabolismo , DopaminaRESUMO
Significant limitations and rapid declines in financial capacity are a hallmark of patients with early-stage Alzheimer's disease (AD). We use linked Health and Retirement Study and Medicare claims data spanning 1992-2014 to examine the effect of early-stage AD, from the start of first symptoms to diagnosis, on household financial outcomes. We estimate household fixed-effects models and examine continuous measures of liquid assets and net wealth, as well as dichotomous indicators for a large change in either outcome. We find robust evidence that early-stage AD places households at significant risk for large adverse changes in liquid assets. Further, we find some, but more limited, evidence that early-stage AD reduces net wealth. Our findings are consequential because financial vulnerability during the disease's early-stage impacts the ability of afflicted individuals and their families to pay for care in the disease's later stage. Additionally, the findings speak to the value that earlier diagnosis may provide by helping avert adverse financial outcomes that occur before the disease is currently diagnosable with available tools. These results also point to a potentially important role for financial institutions in helping reduce exposure of vulnerable elderly to poor outcomes.
Assuntos
Doença de Alzheimer/economia , Características da Família , Financiamento Pessoal , Renda/estatística & dados numéricos , Idoso , Doença de Alzheimer/diagnóstico , Feminino , Humanos , Revisão da Utilização de Seguros/estatística & dados numéricos , Estudos Longitudinais , Masculino , Medicare , Pessoa de Meia-Idade , Inquéritos e Questionários , Estados UnidosRESUMO
OBJECTIVE: To investigate the safety and tolerability of convection-enhanced delivery of an adeno-associated virus, serotype-2 vector carrying glial cell line-derived neurotrophic factor into the bilateral putamina of PD patients. METHODS: Thirteen adult patients with advanced PD underwent adeno-associated virus, serotype-2 vector carrying glial cell line-derived neurotrophic factor and gadoteridol (surrogate MRI tracer) coinfusion (450 µL/hemisphere) at escalating doses: 9 × 1010 vg (n = 6); 3 × 1011 vg (n = 6); and 9 × 1011 vg (n = 1). Intraoperative MRI monitored infusion distribution. Patients underwent UPDRS assessment and [18 F]FDOPA-PET scanning preoperatively and 6 and 18 months postoperatively. RESULTS: Adeno-associated virus, serotype-2 vector carrying glial cell line-derived neurotrophic factor was tolerated without clinical or radiographic toxicity. Average putaminal coverage was 26%. UPDRS scores remained stable. Ten of thirteen and 12 of 13 patients had increased [18 F]FDOPA Kis at 6 and 18 months postinfusion (increase range: 5-274% and 8-130%; median, 36% and 54%), respectively. Ki differences between baseline and 6- and 18-month follow-up were statistically significant (P < 0.0002). CONCLUSION: Adeno-associated virus, serotype-2 vector carrying glial cell line-derived neurotrophic factor infusion was safe and well tolerated. Increased [18 F]FDOPA uptake suggests a neurotrophic effect on dopaminergic neurons. © 2019 International Parkinson and Movement Disorder Society.
Assuntos
Dependovirus/genética , Terapia Genética , Doença de Parkinson/tratamento farmacológico , Transtornos Parkinsonianos/tratamento farmacológico , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Doença de Parkinson/genética , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/terapia , Putamen/efeitos dos fármacosRESUMO
The complex multifactorial nature of polygenic Alzheimer's disease (AD) presents significant challenges for drug development. AD pathophysiology is progressing in a non-linear dynamic fashion across multiple systems levels - from molecules to organ systems - and through adaptation, to compensation, and decompensation to systems failure. Adaptation and compensation maintain homeostasis: a dynamic equilibrium resulting from the dynamic non-linear interaction between genome, epigenome, and environment. An individual vulnerability to stressors exists on the basis of individual triggers, drivers, and thresholds accounting for the initiation and failure of adaptive and compensatory responses. Consequently, the distinct pattern of AD pathophysiology in space and time must be investigated on the basis of the individual biological makeup. This requires the implementation of systems biology and neurophysiology to facilitate Precision Medicine (PM) and Precision Pharmacology (PP). The regulation of several processes at multiple levels of complexity from gene expression to cellular cycle to tissue repair and system-wide network activation has different time delays (temporal scale) according to the affected systems (spatial scale). The initial failure might originate and occur at every level potentially affecting the whole dynamic interrelated systems within an organism. Unraveling the spatial and temporal dynamics of non-linear pathophysiological mechanisms across the continuum of hierarchical self-organized systems levels and from systems homeostasis to systems failure is key to understand AD. Measuring and, possibly, controlling space- and time-scaled adaptive and compensatory responses occurring during AD will represent a crucial step to achieve the capacity to substantially modify the disease course and progression at the best suitable timepoints, thus counteracting disrupting critical pathophysiological inputs. This approach will provide the conceptual basis for effective disease-modifying pathway-based targeted therapies. PP is based on an exploratory and integrative strategy to complex diseases such as brain proteinopathies including AD, aimed at identifying simultaneous aberrant molecular pathways and predicting their temporal impact on the systems levels. The depiction of pathway-based molecular signatures of complex diseases contributes to the accurate and mechanistic stratification of distinct subcohorts of individuals at the earliest compensatory stage when treatment intervention may reverse, stop, or delay the disease. In addition, individualized drug selection may optimize treatment safety by decreasing risk and amplitude of side effects and adverse reactions. From a methodological point of view, comprehensive "omics"-based biomarkers will guide the exploration of spatio-temporal systems-wide morpho-functional shifts along the continuum of AD pathophysiology, from adaptation to irreversible failure. The Alzheimer Precision Medicine Initiative (APMI) and the APMI cohort program (APMI-CP) have commenced to facilitate a paradigm shift towards effective drug discovery and development in AD.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Medicina de Precisão , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Animais , Biomarcadores/sangue , Descoberta de Drogas , Humanos , Proteínas tau/antagonistas & inibidoresRESUMO
It is known that culture media (CM) promotes cellular growth, adhesion, and protects explanted primary brain cells from in vitro stresses. The fetal bovine serum (FBS) supplement used in most CM, however, contains significant quantities of extracellular vesicles (EVs) that confound quantitative and qualitative analyses from the EVs produced by the cultured cells. We quantitatively tested the ability of common FBS EV-depletion protocols to remove exogenous EVs from FBS-supplemented CM and evaluated the influence such methods have on primary astrocyte culture growth and viability. We assessed two methodologies utilized for FBS EV removal prior to adding to CM: (1) an 18-h ultracentrifugation (UC); and (2) a commercial EV-depleted FBS (Exo-FBS™). Our analysis demonstrated that Exo-FBS™ CM provided the largest depletion (75%) of total FBS EVs, while still providing 6.92 × 108 ± 1.39 × 108 EVs/mL. In addition, both UC and Exo-FBS™ CM resulted in poor primary astrocyte cell growth and viability in culture. The two common FBS EV-depletion methods investigated, therefore, not only contaminate in vitro primary cell-derived EV analyses, but also provide a suboptimal environment for primary astrocyte cell growth and viability. It appears likely that future CM optimization, using a serum-free alternative, might be required to advance analyses of cell-specific EVs isolated in vitro.
Assuntos
Meios de Cultura/farmacologia , Vesículas Extracelulares/metabolismo , Soro/metabolismo , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Bovinos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Vesículas Extracelulares/efeitos dos fármacos , Ratos Sprague-DawleyRESUMO
OBJECTIVE: Certain Big 5 personality dimensions have been repeatedly linked to global measures of cognitive function and outcome categories. We examined whether the Big 5 or their specific components showed differential evidence of associations with specific neurocognitive domains. METHODS: Participants were 179 older adults (70+) from a broader study on cognitive aging. The NEO-Five Factor Inventory and a comprehensive battery of neuropsychological tests were used. RESULTS: Adjusted for age, gender, and years of education, probability values, Bayes Factors, and measures effect size from linear models suggested strong evidence for associations between better delayed recall memory and higher Conscientiousness (principally the facets of Goal-Striving and Dependability) and Openness (specifically the Intellectual Interest component). Better executive function and attention showed moderate to strong evidence of associations with lower Neuroticism (especially the Self-conscious Vulnerability facet) and higher Conscientiousness (mostly the Dependability facet). Better language functioning was linked to higher Openness (specifically, the Intellectual Interests facet). Worse visual-spatial function was strongly associated with higher Neuroticism. CONCLUSION: Different tests of neurocognitive functioning show varying degrees of evidence for associations with different personality traits. Better understanding of the patterning of neurocognitive-personality linkages may facilitate grasp of underlying mechanisms and/or refine understanding of co-occurring clinical presentation of personality traits and specific cognitive deficits.
Assuntos
Atenção/fisiologia , Envelhecimento Cognitivo/fisiologia , Função Executiva/fisiologia , Rememoração Mental/fisiologia , Neuroticismo/fisiologia , Percepção/fisiologia , Personalidade/fisiologia , Idoso , Idoso de 80 Anos ou mais , Consciência , Feminino , Humanos , MasculinoRESUMO
BACKGROUND: Proteins pathogenic in Alzheimer's disease (AD) were extracted from neurally derived blood exosomes and quantified to develop biomarkers for the staging of sporadic AD. METHODS: Blood exosomes obtained at one time-point from patients with AD (n = 57) or frontotemporal dementia (FTD) (n = 16), and at two time-points from others (n = 24) when cognitively normal and 1 to 10 years later when diagnosed with AD were enriched for neural sources by immunoabsorption. AD-pathogenic exosomal proteins were extracted and quantified by enzyme-linked immunosorbent assays. RESULTS: Mean exosomal levels of total tau, P-T181-tau, P-S396-tau, and amyloid ß 1-42 (Aß1-42) for AD and levels of P-T181-tau and Aß1-42 for FTD were significantly higher than for case-controls. Step-wise discriminant modeling incorporated P-T181-tau, P-S396-tau, and Aß1-42 in AD, but only P-T181-tau in FTD. Classification of 96.4% of AD patients and 87.5% of FTD patients was correct. In 24 AD patients, exosomal levels of P-S396-tau, P-T181-tau, and Aß1-42 were significantly higher than for controls both 1 to 10 years before and when diagnosed with AD. CONCLUSIONS: Levels of P-S396-tau, P-T181-tau, and Aß1-42 in extracts of neurally derived blood exosomes predict the development of AD up to 10 years before clinical onset.
Assuntos
Doença de Alzheimer/sangue , Peptídeos beta-Amiloides/sangue , Exossomos/metabolismo , Demência Frontotemporal/sangue , Fragmentos de Peptídeos/sangue , Proteínas tau/sangue , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/classificação , Biomarcadores/sangue , Estudos de Casos e Controles , Estudos Transversais , Análise Discriminante , Ensaio de Imunoadsorção Enzimática , Feminino , Demência Frontotemporal/classificação , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação , Sintomas Prodrômicos , Estudos Retrospectivos , Índice de Gravidade de Doença , Fatores de TempoRESUMO
Target-derived neurotrophins use retrogradely transported Trk-signaling endosomes to promote survival and neuronal phenotype at the soma. Despite their critical role in neurotrophin signaling, the nature and molecular composition of these endosomes remain largely unknown, the result of an inability to specifically identify the retrograde signaling entity. Using EGF-bound nanoparticles and chimeric, EGF-binding TrkB receptors, we elucidate Trk-endosomal events involving their formation, processing, retrograde transport, and somal signaling in sympathetic neurons. By comparing retrograde endosomal signaling by Trk to the related but poorly neuromodulatory EGF-receptor, we find that Trk and EGF-receptor endosomes are formed and processed by distinct mechanisms. Surprisingly, Trk and EGF-receptors are both retrogradely transported to the soma in multivesicular bodies. However, only the Trk-multivesicular bodies rely on Pincher-dependent macroendocytosis and processing. Retrograde signaling through Pincher-generated Trk-multivesicular bodies is distinctively refractory to signal termination by lysosomal processing, resulting in sustained somal signaling and neuronal gene expression.
Assuntos
Proteínas de Ligação a DNA/fisiologia , Endossomos/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Proteínas Nucleares/fisiologia , Receptor trkA/metabolismo , Transdução de Sinais , Animais , Endocitose , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia de Fluorescência/métodos , Células PC12 , Ratos , Proteínas rab5 de Ligação ao GTP/metabolismoRESUMO
The increasing number of afflicted individuals with late-onset Alzheimer's disease (AD) poses significant emotional and financial burden on the world's population. Therapeutics designed to treat symptoms or alter the disease course have failed to make an impact, despite substantial investments by governments, pharmaceutical industry, and private donors. These failures in treatment efficacy have led many to believe that symptomatic disease, including both mild cognitive impairment (MCI) and AD, may be refractory to therapeutic intervention. The recent focus on biomarkers for defining the preclinical state of MCI/AD is in the hope of defining a therapeutic window in which the neural substrate remains responsive to treatment. The ability of biomarkers to adequately define the at-risk state may ultimately allow novel or repurposed therapeutic agents to finally achieve the disease-modifying status for AD. In this review, we examine current preclinical AD biomarkers and suggest how to generalize their use going forward.
Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/sangue , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/patologia , Animais , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Sintomas ProdrômicosRESUMO
Successful cell replacement strategies for brain repair depend on graft integration into the neural network, which is affected by the immune response to the grafted cells. Using Parkinson disease as an example, in this chapter, we consider the immune system interaction and its role in autologous vs heterologous graft survival and integration, as well as past and emerging strategies to overcome the immunologic response. We also reflect on the role of nonhuman primate research to assess novel approaches and consider the role of different stakeholders on advancing the most promising new approaches into the clinic.
Assuntos
Doença de Parkinson , Transplante Autólogo , Humanos , Doença de Parkinson/terapia , Animais , Transplante Autólogo/métodos , Doenças do Sistema Nervoso/terapia , Transplante Heterólogo/métodosRESUMO
Accumulation of misfolded proteins has been implicated in a variety of neurodegenerative diseases including prion diseases, Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). In the past decade, single-chain fragment variable (scFv) -based immunotherapies have been developed to target abnormal proteins or various forms of protein aggregates including Aß, SNCA, Htt, and PrP proteins. The scFvs are produced by fusing the variable regions of the antibody heavy and light chains, creating a much smaller protein with unaltered specificity. Because of its small size and relative ease of production, scFvs are promising diagnostic and therapeutic reagents for protein misfolded diseases. Studies have demonstrated the efficacy and safety of scFvs in preventing amyloid protein aggregation in preclinical models. Herein, we discuss recent developments of these immunotherapeutics. We review efforts of our group and others using scFv in neurodegenerative disease models. We illustrate the advantages of scFvs, including engineering to enhance misfolded conformer specificity and subcellular targeting to optimize therapeutic action.
Assuntos
Doenças Neurodegenerativas/terapia , Anticorpos de Cadeia Única/uso terapêutico , Peptídeos beta-Amiloides/imunologia , Humanos , Proteína Huntingtina , Imunização Passiva , Proteínas do Tecido Nervoso/imunologia , Príons/imunologia , Anticorpos de Cadeia Única/imunologia , alfa-Sinucleína/imunologiaRESUMO
Synaptic remodeling has been postulated as a mechanism underlying synaptic plasticity and cell adhesion molecules are thought to contribute to this process. We examined the role of nectin-1 ectodomain shedding on synaptogenesis in cultured rat hippocampal neurons. Nectins are Ca(2+) -independent immunoglobulin-like adhesion molecules, involved in cell-cell adherens junctions. Herein, we show that the processing of nectin-1 occurs by multiple endoproteolytic steps both in vivo and in vitro. We identified regions containing two distinct cleavage sites within the ectodomain of nectin-1. By alanine scanning mutagenesis, two point mutations that disrupt nectin-1 ectodomain cleavage events were identified. Expression of these mutants significantly alters the density of dendritic spines. These findings suggest that ectodomain shedding of nectin-1 regulates dendritic spine density and related synaptic functions.
Assuntos
Moléculas de Adesão Celular/metabolismo , Dendritos/ultraestrutura , Espinhas Dendríticas/fisiologia , Neurônios/citologia , Secretases da Proteína Precursora do Amiloide/farmacologia , Animais , Animais Recém-Nascidos , Moléculas de Adesão Celular/genética , Células Cultivadas , Espinhas Dendríticas/ultraestrutura , Embrião de Mamíferos , Feminino , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Humanos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Nectinas , Neurônios/efeitos dos fármacos , Mutação Puntual/genética , Gravidez , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução Genética , TransfecçãoRESUMO
Clinical trials involving direct infusion of neurotrophic therapies for Parkinson's disease (PD) have suffered from poor coverage of the putamen. The planned use of a novel interventional-magnetic resonance imaging (iMRI) targeting system for achieving precise, real-time convection-enhanced delivery in a planned clinical trial of adeno-associated virus serotype 2 (AAV2)-glial-derived neurotrophic factor (GDNF) in PD patients was modeled in nonhuman primates (NHP). NHP received bilateral coinfusions of gadoteridol (Gd)/AAV2-GDNF into two sites in each putamen, and three NHP received larger infusion volumes in the thalamus. The average targeting error for cannula tip placement in the putamen was <1 mm, and adjacent putamenal infusions were distributed in a uniform manner. GDNF expression patterns in the putamen were highly correlated with areas of Gd distribution seen on MRI. The distribution volume to infusion volume ratio in the putamen was similar to that in the thalamus, where larger infusions were achieved. Modeling the placement of adjacent 150 and 300 µl thalamic infusions into the three-dimensional space of the human putamen demonstrated coverage of the postcommissural putamen, containment within the striatum and expected anterograde transport to globus pallidus and substantia nigra pars reticulata. The results elucidate the necessary parameters for achieving widespread GDNF expression in the putamenal motor area and afferent substantia nigra of PD patients.
Assuntos
Dependovirus/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Doença de Parkinson/terapia , Putamen/metabolismo , Animais , Ensaios Clínicos como Assunto , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Macaca mulatta , Imageamento por Ressonância Magnética , Doença de Parkinson/patologiaRESUMO
Recent reports have suggested that the reactivation of otherwise transcriptionally silent transposable elements (TEs) might induce brain degeneration, either by dysregulating the expression of genes and pathways implicated in cognitive decline and dementia or through the induction of immune-mediated neuroinflammation resulting in the elimination of neural and glial cells. In the work we present here, we test the hypothesis that differentially expressed TEs in blood could be used as biomarkers of cognitive decline and development of AD. To this aim, we used a sample of aging subjects (age > 70) that developed late-onset Alzheimer's disease (LOAD) over a relatively short period of time (12-48 months), for which blood was available before and after their phenoconversion, and a group of cognitive stable subjects as controls. We applied our developed and validated customized pipeline that allows the identification, characterization, and quantification of the differentially expressed (DE) TEs before and after the onset of manifest LOAD, through analyses of RNA-Seq data. We compared the level of DE TEs within more than 600,000 TE-mapping RNA transcripts from 25 individuals, whose specimens we obtained before and after their phenotypic conversion (phenoconversion) to LOAD, and discovered that 1790 TE transcripts showed significant expression differences between these two timepoints (logFC ± 1.5, logCMP > 5.3, nominal p value < 0.01). These DE transcripts mapped both over- and under-expressed TE elements. Occurring before the clinical phenoconversion, this TE storm features significant increases in DE transcripts of LINEs, LTRs, and SVAs, while those for SINEs are significantly depleted. These dysregulations end with signs of manifest LOAD. This set of highly DE transcripts generates a TE transcriptional profile that accurately discriminates the before and after phenoconversion states of these subjects. Our findings suggest that a storm of DE TEs occurs before phenoconversion from normal cognition to manifest LOAD in risk individuals compared to controls, and may provide useful blood-based biomarkers for heralding such a clinical transition, also suggesting that TEs can indeed participate in the complex process of neurodegeneration.
Assuntos
Doença de Alzheimer , Retroelementos , Doença de Alzheimer/genética , Biomarcadores , Humanos , RNARESUMO
Background: How the prefrontal cortex (PFC) recovers its functionality following lesions remains a conundrum. Recent work has uncovered the importance of transient low-frequency oscillatory activity (LFO; < 4 Hz) for the recovery of an injured brain. We aimed to determine whether persistent cortical oscillatory dynamics contribute to brain capability to support 'normal life' following injury. Methods: In this 9-year prospective longitudinal study (08/2012-2021), we collected data from the patient E.L., a modern-day Phineas Gage, who suffered from lesions, impacting 11% of his total brain mass, to his right PFC and supplementary motor area after his skull was transfixed by an iron rod. A systematic evaluation of clinical, electrophysiologic, brain imaging, neuropsychological and behavioural testing were used to clarify the clinical significance of relationship between LFO discharge and executive dysfunctions and compare E.L.´s disorders to that attributed to Gage (1848), a landmark in the history of neurology and neuroscience. Findings: Selective recruitment of the non-injured left hemisphere during execution of unimanual right-hand movements resulted in the emergence of robust LFO, an EEG-detected marker for disconnection of brain areas, in the damaged right hemisphere. In contrast, recruitment of the damaged right hemisphere during contralateral hand movement, resulted in the co-activation of the left hemisphere and decreased right hemisphere LFO to levels of controls enabling performance, suggesting a target for neuromodulation. Similarly, transcranial magnetic stimulation (TMS), used to create a temporary virtual-lesion over E.L.'s healthy hemisphere, disrupted the modulation of contralateral LFO, disturbing behaviour and impairing executive function tasks. In contrast to Gage, reasoning, planning, working memory, social, sexual and family behaviours eluded clinical inspection by decreasing LFO in the delta frequency range during motor and executive functioning. Interpretation: Our study suggests that modulation of LFO dynamics is an important mechanism by which PFC accommodates neurological injuries, supporting the reports of Gage´s recovery, and represents an attractive target for therapeutic interventions. Funding: Fundação de Amparo Pesquisa Rio de Janeiro (FAPERJ), Universidade Federal do Rio de Janeiro (intramural), and Fiocruz/Ministery of Health (INOVA Fiocruz).
RESUMO
The prionoses are fatal neurodegenerative diseases caused by a pathogenic protein, PrP scrapie, that derives from misfolding of a normal form, PrP(c). These diseases progress through stages. A new study by Mallucci et al. in this issue of Neuron shows that prion disease may be reversed in mice by selective removal of the gene in neurons after early physiological, cognitive, and pathological features have developed.
Assuntos
Deleção de Genes , Neurônios/fisiologia , Doenças Priônicas/psicologia , Doenças Priônicas/terapia , Príons/genética , Dobramento de Proteína , Animais , Camundongos , Doenças Priônicas/patologiaRESUMO
Clinical studies to date have failed to establish therapeutic benefit of glial cell-derived neurotrophic factor (GDNF) in Parkinson's disease (PD). In contrast to previous nonclinical neuroprotective reports, this study shows clinically relevant and long-lasting regeneration of the dopaminergic system in rhesus macaques lesioned with 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine 3-6 months before GDNF gene delivery (AAV2-GDNF). The observed progressive amelioration of functional deficits, recovery of dopamine, and regrowth of fibers to the striatal neuropil demonstrate that high GDNF expression in the putamen promotes restoration of the dopaminergic system in a primate model of advanced PD. Extensive distribution of GDNF within the putamen and transport to the severely lesioned substantia nigra, after convection-enhanced delivery of AAV2-GDNF into the putamen, indicates anterograde transport via striatonigral connections and is anticipated to occur in PD patients. Overall, these data demonstrate nonclinical neurorestoration after putaminal infusion of AAV2-GDNF and suggest that clinical investigation in PD patients is warranted.
Assuntos
Dopamina/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/uso terapêutico , Regeneração Nervosa/genética , Neurônios/metabolismo , Transtornos Parkinsonianos/terapia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Análise de Variância , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Cromatografia Líquida de Alta Pressão , Ensaio de Imunoadsorção Enzimática , Feminino , Terapia Genética , Vetores Genéticos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Imuno-Histoquímica , Macaca mulatta , Masculino , Neurônios/patologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Recuperação de Função FisiológicaRESUMO
Hypoxia-induced gene expression is a critical determinant of neuron survival after stroke. Understanding the cell autonomous genetic program controlling adaptive and pathological transcription could have important therapeutic implications. To identify the factors that modulate delayed neuronal apoptosis after hypoxic injury, we developed an in vitro culture model that recapitulates these divergent responses and characterized the sequence of gene expression changes using microarrays. Hypoxia induced a disproportionate number of bZIP transcription factors and related targets involved in the endoplasmic reticulum stress response. Although the temporal and spatial aspects of ATF4 expression correlated with neuron loss, our results did not support the anticipated pathological role for delayed CHOP expression. Rather, CHOP deletion enhanced neuronal susceptibility to both hypoxic and thapsigargin-mediated injury and attenuated brain-derived neurotrophic factor-induced neuroprotection. Also, enforced expression of CHOP prior to the onset of hypoxia protected wild-type cultures against subsequent injury. Collectively, these findings indicate CHOP serves a more complex role in the neuronal response to hypoxic stress with involvement in both ischemic preconditioning and delayed neuroprotection.