RESUMO
MAIN CONCLUSION: PlARF2 can positively regulate the seed dormancy in Paeonia lactiflora Pall. and bind the RY cis-element. Auxin, a significant phytohormone influencing seed dormancy, has been demonstrated to be regulated by auxin response factors (ARFs), key transcriptional modulators in the auxin signaling pathway. However, the role of this class of transcription factors (TFs) in perennials with complex seed dormancy mechanisms remains largely unexplored. Here, we cloned and characterized an ARF gene from Paeonia lactiflora, named PlARF2, which exhibited differential expression levels in the seeds during the process of seed dormancy release. The deduced amino acid sequence of PlARF2 had high homology with those of other plants and contained typical conserved Auxin_resp domain of the ARF family. Phylogenetic analysis revealed that PlARF2 was closely related to VvARF3 in Vitis vinifera. The subcellular localization and transcriptional activation assay showed that PlARF2 is a nuclear protein possessing transcriptional activation activity. The expression levels of dormancy-related genes in transgenic callus indicated that PlARF2 was positively correlated with the contents of PlABI3 and PlDOG1. The germination assay showed that PlARF2 promoted seed dormancy. Moreover, TF Centered Yeast one-hybrid assay (TF-Centered Y1H), electrophoretic mobility shift assay (EMSA) and dual-luciferase reporter assay analysis (Dual-Luciferase) provided evidence that PlARF2 can bind to the 'CATGCATG' motif. Collectively, our findings suggest that PlARF2, as TF, could be involved in the regulation of seed dormancy and may act as a repressor of germination.
Assuntos
Regulação da Expressão Gênica de Plantas , Paeonia , Filogenia , Dormência de Plantas , Proteínas de Plantas , Paeonia/genética , Paeonia/fisiologia , Paeonia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dormência de Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Germinação/genética , Plantas Geneticamente Modificadas , Sequência de AminoácidosRESUMO
Abscisic acid (ABA) is a major phytohormone affecting seed dormancy and germination in plants. ABA is synthesized mainly through the C40 carotenoid pathway. In the ABA biosynthesis pathway, 9-cis-epoxycarotenoid dioxygenase (NCED) is a key rate-limiting enzyme that regulates the accumulation and content of ABA. However, the role of the NCED gene in perennial plants with complex seed dormancy remains largely unknown. Here, we cloned two differentially expressed paralogs of herbaceous peony NCED genes, named PlNCED1 and PlNCED2, and further identified their involvement in seed dormancy from perennial herbaceous peony experiencing complex double seed dormancy. The deduced PlNCED amino acid sequences had high sequence homology with NCED sequences from other plants and contained the typical conserved RPE65 domain of the NCED family. Phylogenetic analysis showed that PlNCED1 and PlNCED2 have a close relationship with PoNCED in Paeonia ostii and VvNCED6 in Vitis vinifera, respectively. A subcellular localization assay demonstrated that the PlNCED1 protein resided within the nucleus, while the PlNCED2 protein was located in the cytoplasm, indicating their different roles in the biosynthesis of ABA. Furthermore, the content of endogenous ABA in transgenic calluses showed that PlNCEDs were positively correlated with ABA content. Both PlNCED transgenic Arabidopsis lines and the functional complementation of Arabidopsis NCED mutants found that PlNCEDs promoted seed dormancy and delayed seed germination. These results reveal that PlNCEDs participate in the seed dormancy of herbaceous peony by regulating the accumulation of endogenous ABA.
RESUMO
Paeonia lactiflora Pall. is known as the king of herbaceous flowers with high ornamental and precious medicinal value. However, the lack of a stable genetic transformation system has greatly affected the research of gene function in P. lactiflora. The Agrobacterium-mediated transient gene expression is a powerful tool for the characterization of gene function in plants. In this study, the seedlings of P. lactiflora were used as the transformation receptor materials, and the efficient transient transformation system with a GUS reporter gene was successfully established by Agrobacterium harboring pCAMBIA1301. To optimize the system, we investigated the effects of germination time, Agrobacterium cell density, infection time, acetosyringone (AS) concentration, co-culture time, negative pressure intensity, Tween-20 concentration and different receptor materials on the transient transformation efficiency of P. lactiflora. The results showed that the highest transient transformation efficiency (93.3%) could be obtained when seedlings in 2-3 cm bud length were subjected to 12 h infection of resuspension solution comprising 1.2 OD600 Agrobacterium, 200 µM AS and 0.01% Tween-20 under 10 of negative pressure intensity followed by 3 days of co-culture in darkness condition. This method is more suitable for the study of gene function in P. lactiflora. Subsequently, stress resistance genes PlGPAT, PlDHN2 and PlHD-Zip were used to verify the effectiveness of this transformation system. These results can provide critical information for identification of key genes in non-model plants, such as P. lactiflora, and promote the development of molecular biology research for P. lactiflora.
RESUMO
Paeonia lactiflora Pall. is an important ornamental plant with high economic and medicinal value, which has considerable development prospects worldwide. The lack of efficient tissue culture techniques and genetic transformation systems has become a master obstacle for P. lactiflora research. The purpose of the present study focuses on obtaining an efficient and stable genetic transformation method using callus as the receptor and exploring an efficient protocol for callus induction and proliferation associated with P. lactiflora. Callus induction and proliferation were performed using MS medium with various concentrations of 2,4-Dichlorophenoxyacetic acid (2,4-D), 1-Naphthaleneacetic acid (NAA), 6-Benzylaminopurine (6-BA) and thidiazuron (TDZ). The sensitivity of callus to kanamycin and cefotaxime was determined. Several parameters such as Agrobacterium cell density, infection time and co-culture duration were studied to optimize transformation efficiency. Agrobacterium strains EHA105 and pBI121 binary vector harboring the ß-glucuronidase (GUS) gene were used for transformation. Expression of the GUS reporter gene was detected by GUS assay, polymerase chain reaction (PCR) and Quantitative Real-time PCR (RT-qPCR). The MS medium containing 1.0 mg·L-1 NAA, 0.5 mg·L-1 2,4-D and 0.5 mg·L-1 TDZ was optimal for callus induction and MS medium containing 0.5 mg·L-1 NAA, 1.0 mg·L-1 2,4-D and 0.5 mg·L-1 TDZ was the best for callus proliferation. The concentrations of kanamycin and cefotaxime used for screening positive callus were 125 mg·L-1 and 200 mg·L-1, respectively. Among various combinations analyzed, the best transformation result was obtained via the 25 min of infection of Agrobacterium at 0.6 OD600 and 3 d of co-culture. Overall, this study provided technical support and theoretical guidance for improving the callus induction and proliferation efficiency and the study of gene function in P. lactiflora.
RESUMO
Herbaceous peony (Paeonia lactiflora Pall.) is a popular ornamental and medicinal plant. Taking approximately six to seven months, the seeds germination under natural conditions experiences dual dormancies, which seriously affects horticultural cultivation. Few studies have been conducted on exploring both biological and molecular mechanism that regulates dormancy removal process in hypocotyls double dormant plants. Here, we first measured ABA and GA3 content changes at four key dormancy break stages, and then performed transcriptomic analyses to identify the differentially expressed genes (DEGs) using RNA-seq. We subsequently carried out Quantitative real-time PCR (qRT-PCR) to validate RNA-seq data. ABA content decreased during the whole dormancy removal process and GA3 content exhibited decreasing slightly and then increasing trend. RNA sequencing de novo assembly generated a total of 99,577 unigenes. 20,344 unigenes were differentially expressed in the whole dormancy release process. The qPCR results of 54 selected unigenes were consistent with the FPKM values obtained from RNA-seq. Our results summarize a valuable collection of gene expression profiles characterizing the dormancy release process. The DEGs are candidates for functional analyses of genes affecting the dormancy release, which is a precious resource for the on-going physiological and molecular investigation of seeds dormancy removal in other perennial plants.
Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Paeonia/genética , Dormência de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Anotação de Sequência Molecular , Transdução de Sinais , Transcriptoma/genéticaRESUMO
Paeonia lactiflora is a herbaceous flower in the family Paeoniaceae with both hypocotyl and epicotyl dormant seeds. We used high-throughput transcriptome sequencing on two different developmental stages of P. lactiflora seeds to identify seed dormancy and germination-related genes. We performed de novo assembly and annotated a total of 123,577 unigenes, which encoded 24,688 putative proteins with 47 GO categories. A total of 10,714 unigenes were annotated in the KEGG database, and 258 pathways were involved in the annotations. A total of 1795 genes were differentially expressed in the functional enrichment analysis. The key genes for seed germination and dormancy, such as GAI1 and ARF, were confirmed by quantitative reverse transcription-polymerase chain reaction analysis. This is the first report of sequencing the P. lactiflora seed transcriptome. Our results provide fundamental frame work and technical support for further selective breeding and cultivation of Paeonia. Our transcriptomic data also serves as the basis for future genetics and genomics research on Paeonia and its closely related species.