Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Sci ; 123(Pt 11): 1940-7, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20484665

RESUMO

Regulation of exocytosis by voltage-gated K(+) channels has classically been viewed as inhibition mediated by K(+) fluxes. We recently identified a new role for Kv2.1 in facilitating vesicle release from neuroendocrine cells, which is independent of K(+) flux. Here, we show that Kv2.1-induced facilitation of release is not restricted to neuroendocrine cells, but also occurs in the somatic-vesicle release from dorsal-root-ganglion neurons and is mediated by direct association of Kv2.1 with syntaxin. We further show in adrenal chromaffin cells that facilitation induced by both wild-type and non-conducting mutant Kv2.1 channels in response to long stimulation persists during successive stimulation, and can be attributed to an increased number of exocytotic events and not to changes in single-spike kinetics. Moreover, rigorous analysis of the pools of released vesicles reveals that Kv2.1 enhances the rate of vesicle recruitment during stimulation with high Ca(2+), without affecting the size of the readily releasable vesicle pool. These findings place a voltage-gated K(+) channel among the syntaxin-binding proteins that directly regulate pre-fusion steps in exocytosis.


Assuntos
Células Cromafins/metabolismo , Exocitose , Gânglios Espinais/patologia , Neurônios/metabolismo , Vesículas Secretórias/metabolismo , Canais de Potássio Shab/metabolismo , Animais , Animais Recém-Nascidos , Sinalização do Cálcio , Células Cultivadas , Células Cromafins/patologia , Eletrofisiologia , Neurônios/patologia , Proteínas Qa-SNARE/metabolismo , Ratos , Ratos Wistar , Canais de Potássio Shab/genética
2.
Biochemistry ; 48(19): 4109-14, 2009 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-19331362

RESUMO

The Kv1.1 channel that is expressed throughout the central and peripheral nervous system is known to interact with syntaxin 1A, a member of the exocytosis machinery protein complex. This interaction was previously shown to increase the macroscopic currents of the presynaptic Kv1.1 channel when coexpressed in Xenopus oocytes, while it decreased the unitary channel conductance and open probability. This apparent discrepancy has been resolved in this work, using electrophysiological, biochemical, and immunohistochemical analyses in oocytes by overexpression and antisense knockdown of syntaxin. Here, we demonstrate that syntaxin plays a dual role in the modulation of Kv1.1 function: enhancement of the channel's surface expression along with attenuation of single channel ion flux. These findings broaden the scope of channels and transporters that are dually modulated by syntaxin. Although the dual functioning of syntaxin in modulation of Kv1.1 channel activity may seem antagonistic, the combination of the two mechanisms may provide a useful means for fine-tuning axonal excitability and synaptic efficacy.


Assuntos
Condutividade Elétrica , Canal de Potássio Kv1.1/metabolismo , Proteínas de Membrana/metabolismo , Sintaxina 1/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Sequência de Bases , Eletrofisiologia , Feminino , Canal de Potássio Kv1.1/genética , Microinjeções , Modelos Neurológicos , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/farmacologia , Oócitos/metabolismo , Técnicas de Patch-Clamp , Sintaxina 1/genética , Xenopus , Proteínas de Xenopus/genética
3.
J Neurosci ; 27(7): 1651-8, 2007 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-17301173

RESUMO

Kv channels inhibit release indirectly by hyperpolarizing membrane potential, but the significance of Kv channel interaction with the secretory apparatus is not known. The Kv2.1 channel is commonly expressed in the soma and dendrites of neurons, where it could influence the release of neuropeptides and neurotrophins, and in neuroendocrine cells, where it could influence hormone release. Here we show that Kv2.1 channels increase dense-core vesicle (DCV)-mediated release after elevation of cytoplasmic Ca2+. This facilitation occurs even after disruption of pore function and cannot be explained by changes in membrane potential and cytoplasmic Ca2+. However, triggering release increases channel binding to syntaxin, a secretory apparatus protein. Disrupting this interaction with competing peptides or by deleting the syntaxin association domain of the channel at the C terminus blocks facilitation of release. Thus, direct association of Kv2.1 with syntaxin promotes exocytosis. The dual functioning of the Kv channel to influence release, through its pore to hyperpolarize the membrane potential and through its C-terminal association with syntaxin to directly facilitate release, reinforces the requirements for repetitive firing for exocytosis of DCVs in neuroendocrine cells and in dendrites.


Assuntos
Exocitose/fisiologia , Proteínas Qa-SNARE/metabolismo , Vesículas Secretórias/fisiologia , Canais de Potássio Shab/fisiologia , Animais , Cálcio/metabolismo , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Exocitose/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imunoprecipitação/métodos , Potenciais da Membrana/genética , Potenciais da Membrana/efeitos da radiação , Mutagênese/fisiologia , Neuropeptídeos/metabolismo , Oócitos , Células PC12 , Técnicas de Patch-Clamp , Cloreto de Potássio/farmacologia , Ratos , Vesículas Secretórias/efeitos dos fármacos , Transfecção/métodos , Xenopus
4.
Ann N Y Acad Sci ; 1152: 87-92, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19161379

RESUMO

Voltage-gated ion channels are well characterized for their function in excitability signals. Accumulating studies, however, have established an ion-independent function for the major classes of ion channels in cellular signaling. During the last few years we established a novel role for Kv2.1, a voltage-gated potassium (Kv) channel, classically known for its role of repolarizing the membrane potential, in facilitation of exocytosis. Kv2.1 induces facilitation of depolarization-induced release through its direct interaction with syntaxin, a protein component of the exocytotic machinery, independently of the potassium ion flow through the channel's pore. Here, we review our recent studies, further characterize the phenomena (using chromaffin cells and carbon fiber amperometry), and suggest plausible mechanisms that can underlie this facilitation of release.


Assuntos
Exocitose , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Células Cromafins/metabolismo , Humanos , Ligação Proteica , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA