Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Exp Child Psychol ; 246: 105979, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38861807

RESUMO

The current study examined predictions from embodied cognition for effects of finger counting on number processing. Although finger counting is spontaneous and nearly universal, counting habits reflect learning and culture. European cultures use a sub-base-five system, requiring a full hand plus additional fingers to express numbers exceeding 5. Chinese culture requires only one hand to express such numbers. We investigated the differential impact of early-acquired finger-based number representations on adult symbolic number processing. In total, 53 European and 56 Chinese adults performed two versions of the magnitude classification task, where numbers were presented either as Arabic symbols or as finger configurations consistent with respective cultural finger-counting habits. Participants classified numbers as smaller/larger than 5 with horizontally aligned buttons. Finger-based size and distance effects were larger in Chinese compared with Europeans. These differences did not, however, induce reliably different symbol processing signatures. This dissociation challenges the idea that sensory and motor habits shape our conceptual representations and implies notation-specific processing patterns.

2.
Exp Brain Res ; 239(8): 2489-2499, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34117890

RESUMO

Cognition is shaped by signals from outside and within the body. Following recent evidence of interoceptive signals modulating higher-level cognition, we examined whether breathing changes the production and perception of quantities. In Experiment 1, 22 adults verbally produced on average larger random numbers after inhaling than after exhaling. In Experiment 2, 24 further adults estimated the numerosity of dot patterns that were briefly shown after either inhaling or exhaling. Again, we obtained on average larger responses following inhalation than exhalation. These converging results extend models of situated cognition according to which higher-level cognition is sensitive to transient interoceptive states.


Assuntos
Interocepção , Adulto , Cognição , Humanos , Respiração
3.
Behav Brain Sci ; 44: e5, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33599596

RESUMO

Lee and Schwarz (L&S) suggest that separation is the grounded procedure underlying cleansing effects in different psychological domains. Here, we interpret L&S's account from a hierarchical view of cognition that considers the influence of physical properties and sensorimotor constraints on mental representations. This approach allows theoretical integration and generalization of L&S's account to the domain of formal quantitative reasoning.


Assuntos
Cognição , Teoria Fundamentada , Humanos
4.
J Exp Psychol Gen ; 153(4): 994-1016, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38300541

RESUMO

Numbers are a constant presence in our daily lives: A brain devoid of the ability to process numbers would not be functional in its external environment. Comparing numerical magnitudes is a fundamental ability that requires the processing of numerical distances. From magnitude comparison tasks, a comparison distance effect (DE) emerges: It describes better performance when comparing numerically distant rather than close numbers. Unlike other signatures of number processing, the comparison DE has been assessed only implicitly, with numerical distance as nonsalient task property. Different assessments permit identification of different cognitive processes underlying a specific effect. To investigate whether explicit and implicit assessment of the comparison DE influences numerical cognition differently, we introduced the distance classification task, involving explicit classification of numbers as close or far from a reference. N = 93 healthy adults classified numbers either by magnitude or by numerical distance. To investigate associations between numerical and physical distance, response buttons were positioned horizontally (Experiment 1) or radially (Experiment 2). In both experiments, there was an advantage for both the closest and farthest numbers with respect to the reference during distance classification, but not during magnitude classification. In Experiment 2, numerically close/far numbers were classified faster with the close/far response button, respectively, suggesting radial correspondence between physical and representational distances. These findings provide new theoretical and methodological insights into the mental representation of numbers. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Assuntos
Encéfalo , Cognição , Adulto , Humanos , Tempo de Reação/fisiologia , Encéfalo/fisiologia
5.
Cognition ; 221: 104991, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34968993

RESUMO

Previous studies suggest that associations between numbers and space are mediated by shifts of visuospatial attention along the horizontal axis. In this study, we investigated the effect of vertical shifts of overt attention, induced by optokinetic stimulation (OKS) and monitored through eye-tracking, in two tasks requiring explicit (number comparison) or implicit (parity judgment) processing of number magnitude. Participants were exposed to black-and-white stripes (OKS) that moved vertically (upward or downward) or remained static (control condition). During the OKS, participants were asked to verbally classify auditory one-digit numbers as larger/smaller than 5 (comparison task; Exp. 1) or as odd/even (parity task; Exp. 2). OKS modulated response times in both experiments. In Exp.1, upward attentional displacement decreased the Magnitude effect (slower responses for large numbers) and increased the Distance effect (slower responses for numbers close to the reference). In Exp.2, we observed a complex interaction between parity, magnitude, and OKS, indicating that downward attentional displacement slowed down responses for large odd numbers. Moreover, eye tracking analyses revealed an influence of number processing on eye movements both in Exp. 1, with eye gaze shifting downwards during the processing of small numbers as compared to large ones; and in Exp. 2, with leftward shifts after large even numbers (6,8) and rightward shifts after large odd numbers (7,9). These results provide evidence of bidirectional links between number and space and extend them to the vertical dimension. Moreover, they document the influence of visuo-spatial attention on processing of numerical magnitude, numerical distance, and parity. Together, our findings are in line with grounded and embodied accounts of numerical cognition.


Assuntos
Atenção , Tecnologia de Rastreamento Ocular , Atenção/fisiologia , Cognição , Movimentos Oculares , Humanos , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia , Percepção Espacial/fisiologia
6.
Front Psychol ; 12: 697881, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552528

RESUMO

Spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD) both are rare genetic neuromuscular diseases with progressive loss of motor ability. The neuromotor developmental course of those diseases is well documented. In contrast, there is only little evidence about characteristics of general and specific cognitive development. In both conditions the final motor outcome is characterized by an inability to move autonomously: children with SMA never accomplish independent motoric exploration of their environment, while children with DMD do but later lose this ability again. These profound differences in developmental pathways might affect cognitive development of SMA vs. DMD children, as cognition is shaped by individual motor experiences. DMD patients show impaired executive functions, working memory, and verbal IQ, whereas only motor ability seems to be impaired in SMA. Advanced cognitive capacity in SMA may serve as a compensatory mechanism for achieving in education, career progression, and social satisfaction. This study aimed to relate differences in basic numerical concepts and arithmetic achievement in SMA and DMD patients to differences in their motor development and resulting sensorimotor and environmental experiences. Horizontal and vertical spatial-numerical associations were explored in SMA/DMD children ranging between 6 and 12 years through the random number generation task. Furthermore, arithmetic skills as well as general cognitive ability were assessed. Groups differed in spatial number processing as well as in arithmetic and domain-general cognitive functions. Children with SMA showed no horizontal and even reversed vertical spatial-numerical associations. Children with DMD on the other hand revealed patterns in spatial numerical associations comparable to healthy developing children. From the embodied Cognition perspective, early sensorimotor experience does play a role in development of mental number representations. However, it remains open whether and how this becomes relevant for the acquisition of higher order cognitive and arithmetic skills.

7.
Ann N Y Acad Sci ; 1477(1): 44-53, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32645221

RESUMO

"Left" and "right" coordinates control our spatial behavior and even influence abstract thoughts. For number concepts, horizontal spatial-numerical associations (SNAs) have been widely documented: we associate few with left and many with right. Importantly, increments are universally coded on the right side even in preverbal humans and nonhuman animals, thus questioning the fundamental role of directional cultural habits, such as reading or finger counting. Here, we propose a biological, nonnumerical mechanism for the origin of SNAs on the basis of asymmetric tuning of animal brains for different spatial frequencies (SFs). The resulting selective visual processing predicts both universal SNAs and their context-dependence. We support our proposal by analyzing the stimuli used to document SNAs in newborns for their SF content. As predicted, the SFs contained in visual patterns with few versus many elements preferentially engage right versus left brain hemispheres, respectively, thus predicting left-versus rightward behavioral biases. Our "brain's asymmetric frequency tuning" hypothesis explains the perceptual origin of horizontal SNAs for nonsymbolic visual numerosities and might be extensible to the auditory domain.


Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Animais , Animais Recém-Nascidos/fisiologia , Comportamento Animal , Humanos , Estimulação Luminosa , Tempo de Reação/fisiologia , Leitura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA