Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Cancer ; 19(1): 1116, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729963

RESUMO

OBJECT: Glioma is a common malignant tumours in the central nervous system (CNS), that exhibits high morbidity, a low cure rate, and a high recurrence rate. Currently, immune cells are increasingly known to play roles in the suppression of tumourigenesis, progression and tumour growth in many tumours. Therefore, given this increasing evidence, we explored the levels of some immune cell genes for predicting the prognosis of patients with glioma. METHODS: We extracted glioma data from The Cancer Genome Atlas (TCGA). Using the Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm, the relative proportions of 22 types of infiltrating immune cells were determined. In addition, the relationships between the scales of some immune cells and sex/age were also calculated by a series of analyses. A P-value was derived for the deconvolution of each sample, providing credibility for the data analysis (P < 0.05). All analyses were conducted using R version 3.5.2. Five-year overall survival (OS) also showed the effectiveness and prognostic value of each proportion of immune cells in glioma; a bar plot, correlation-based heatmap (corheatmap), and heatmap were used to represent the proportions of immune cells in each glioma sample. RESULTS: In total, 703 transcriptomes from a clinical dataset of glioma patients were drawn from the TCGA database. The relative proportions of 22 types of infiltrating immune cells are presented in a bar plot and heatmap. In addition, we identified the levels of immune cells related to prognosis in patients with glioma. Activated dendritic cells (DCs), eosinophils, activated mast cells, monocytes and activated natural killer (NK) cells were positively related to prognosis in the patients with glioma; however, resting NK cells, CD8+ T cells, T follicular helper cells, gamma delta T cells and M0 macrophages were negatively related to prognosis in the patients with glioma. Specifically, the proportions of several immune cells were significantly related to patient age and sex. Furthermore, the level of M0 macrophages was significant in regard to interactions with other immune cells, including monocytes and gamma delta T cells, in glioma tissues through sample data analysis. CONCLUSION: We performed a novel gene expression-based study of the levels of immune cell subtypes and prognosis in glioma, which has potential clinical prognostic value for patients with glioma.


Assuntos
Células Dendríticas/imunologia , Glioma/genética , Glioma/imunologia , Células Matadoras Naturais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Macrófagos/imunologia , Células Dendríticas/patologia , Feminino , Perfilação da Expressão Gênica/métodos , Glioma/patologia , Humanos , Células Matadoras Naturais/patologia , Linfócitos do Interstício Tumoral/patologia , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico
2.
Ann Transl Med ; 8(16): 1007, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32953807

RESUMO

BACKGROUND: It has been observed that lncRNAs have been taking part in many cancer progressions, including non-small cell lung cancer and gastric cancer. Meanwhile, lncRNA small nucleolar RNA host gene 22 (SNHG22) has been studied, taking part in the progression of ovarian epithelial carcinoma. However, we know little about the function of SNHG22 in esophageal squamous cell carcinoma (ESCC). METHODS: In this study, we will explore the inner mechanism of SNHG22 in ESCC. Quantitative real-time PCR (qRT-PCR) assay was implemented in ESCC cells for detecting the expression of lncRNA, SNHG22, and miR-429. Also, functional experiments, including CCK8 and colony formation assay, were implemented to assess the growth of ESCC cells. Meanwhile, flow cytometry analysis was conducted to test the apoptosis of ESCC cells. The immunofluorescence (IF) assay and western blot were conducted to verify the autophagy of ESCC cells. RESULTS: Inhibition of SNHG22 was found that can inhibit the progression and promotes autophagy and apoptosis of ESCC cells. Meanwhile, as subcellular fraction assay and FISH assay found that SNHG22 mainly in the cytoplasm, miR-429 was found can bind to SNHG22 and SESN3 by RIP assay and luciferase reporter assay. SESN3 was found it can play the oncogene in ESCC cells. CONCLUSIONS: SNHG22 promotes the progression of ESCC by the miR-429/SESN3 axis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA