Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Biol Chem ; 300(3): 105736, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336297

RESUMO

Advances in personalized medicine and protein engineering require accurately predicting outcomes of amino acid substitutions. Many algorithms correctly predict that evolutionarily-conserved positions show "toggle" substitution phenotypes, which is defined when a few substitutions at that position retain function. In contrast, predictions often fail for substitutions at the less-studied "rheostat" positions, which are defined when different amino acid substitutions at a position sample at least half of the possible functional range. This review describes efforts to understand the impact and significance of rheostat positions: (1) They have been observed in globular soluble, integral membrane, and intrinsically disordered proteins; within single proteins, their prevalence can be up to 40%. (2) Substitutions at rheostat positions can have biological consequences and ∼10% of substitutions gain function. (3) Although both rheostat and "neutral" (defined when all substitutions exhibit wild-type function) positions are nonconserved, the two classes have different evolutionary signatures. (4) Some rheostat positions have pleiotropic effects on function, simultaneously modulating multiple parameters (e.g., altering both affinity and allosteric coupling). (5) In structural studies, substitutions at rheostat positions appear to cause only local perturbations; the overall conformations appear unchanged. (6) Measured functional changes show promising correlations with predicted changes in protein dynamics; the emergent properties of predicted, dynamically coupled amino acid networks might explain some of the complex functional outcomes observed when substituting rheostat positions. Overall, rheostat positions provide unique opportunities for using single substitutions to tune protein function. Future studies of these positions will yield important insights into the protein sequence/function relationship.


Assuntos
Substituição de Aminoácidos , Aminoácidos , Proteínas , Sequência de Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Sequência Conservada , Evolução Molecular , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Engenharia de Proteínas , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Relação Estrutura-Atividade , Humanos
2.
J Biol Chem ; 300(3): 105672, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272229

RESUMO

"Allosteric" was first introduced to mean the other site (i.e., a site distinct from the active or orthosteric site), an adjective for "regulation" to imply a regulatory outcome resulting from ligand binding at another site. That original idea outlines a system with two ligand-binding events at two distinct locations on a macromolecule (originally a protein system), which defines a four-state energy cycle. An allosteric energy cycle provides a quantifiable allosteric coupling constant and focuses our attention on the unique properties of the four equilibrated protein complexes that constitute the energy cycle. Because many observed phenomena have been referenced as "allosteric regulation" in the literature, the goal of this work is to use literature examples to explore which systems are and are not consistent with the two-ligand thermodynamic energy cycle-based definition of allosteric regulation. We emphasize the need for consistent language so comparisons can be made among the ever-increasing number of allosteric systems. Building on the mutually exclusive natures of an energy cycle definition of allosteric regulation versus classic two-state models, we conclude our discussion by outlining how the often-proposed Rube-Goldberg-like mechanisms are likely inconsistent with an energy cycle definition of allosteric regulation.


Assuntos
Regulação Alostérica , Sítio Alostérico , Ligantes , Termodinâmica , Humanos , Animais , Biocatálise , Dobramento de Proteína , Proteínas/metabolismo
3.
J Biol Chem ; 300(6): 107352, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723750

RESUMO

In Escherichia coli, the master transcription regulator catabolite repressor activator (Cra) regulates >100 genes in central metabolism. Cra binding to DNA is allosterically regulated by binding to fructose-1-phosphate (F-1-P), but the only documented source of F-1-P is from the concurrent import and phosphorylation of exogenous fructose. Thus, many have proposed that fructose-1,6-bisphosphate (F-1,6-BP) is also a physiological regulatory ligand. However, the role of F-1,6-BP has been widely debated. Here, we report that the E. coli enzyme fructose-1-kinase (FruK) can carry out its "reverse" reaction under physiological substrate concentrations to generate F-1-P from F-1,6-BP. We further show that FruK directly binds Cra with nanomolar affinity and forms higher order, heterocomplexes. Growth assays with a ΔfruK strain and fruK complementation show that FruK has a broader role in metabolism than fructose catabolism. Since fruK itself is repressed by Cra, these newly-reported events add layers to the dynamic regulation of E. coli's central metabolism that occur in response to changing nutrients. These findings might have wide-spread relevance to other γ-proteobacteria, which conserve both Cra and FruK.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Frutoquinases/metabolismo , Frutoquinases/genética , Frutose/metabolismo , Frutosedifosfatos/metabolismo , Frutosefosfatos/metabolismo , Regulação Bacteriana da Expressão Gênica
4.
J Biol Chem ; 299(1): 102762, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36463962

RESUMO

Chlamydia trachomatis (ct) is the most reported bacterial sexually transmitted infection worldwide and the leading cause of preventable blindness. Caseinolytic proteases (ClpP) from pathogenic bacteria are attractive antibiotic targets, particularly for bacterial species that form persister colonies with phenotypic resistance against common antibiotics. ClpP functions as a multisubunit proteolytic complex, and bacteria are eradicated when ClpP is disrupted. Although crucial for chlamydial development and the design of agents to treat chlamydia, the structures of ctClpP1 and ctClpP2 have yet to be solved. Here, we report the first crystal structure of full-length ClpP2 as an inactive homotetradecamer in a complex with a candidate antibiotic at 2.66 Å resolution. The structure details the functional domains of the ClpP2 protein subunit and includes the handle domain, which is integral to proteolytic activation. In addition, hydrogen-deuterium exchange mass spectroscopy probed the dynamics of ClpP2, and molecular modeling of ClpP1 predicted an assembly with ClpP2. By leveraging previous enzymatic experiments, we constructed a model of ClpP2 activation and its interaction with the protease subunits ClpP1 and ClpX. The structural information presented will be relevant for future rational drug design against these targets and will lead to a better understanding of ClpP complex formation and activation within this important human pathogen.


Assuntos
Chlamydia trachomatis , Endopeptidase Clp , Modelos Moleculares , Humanos , Antibacterianos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/enzimologia , Endopeptidase Clp/química , Endopeptidase Clp/metabolismo , Cristalização , Domínios Proteicos
5.
Proteins ; 92(4): 554-566, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38041394

RESUMO

NADH cytochrome b5 oxidoreductase (Ncb5or) is a cytosolic ferric reductase implicated in diabetes and neurological conditions. Ncb5or comprises cytochrome b5 (b5 ) and cytochrome b5 reductase (b5 R) domains separated by a CHORD-Sgt1 (CS) linker domain. Ncb5or redox activity depends on proper inter-domain interactions to mediate electron transfer from NADH or NADPH via FAD to heme. While full-length human Ncb5or has proven resistant to crystallization, we have succeeded in obtaining high-resolution atomic structures of the b5 domain and a construct containing the CS and b5 R domains (CS/b5 R). Ncb5or also contains an N-terminal intrinsically disordered region of 50 residues that has no homologs in other protein families in animals but features a distinctive, conserved L34 MDWIRL40 motif also present in reduced lateral root formation (RLF) protein in rice and increased recombination center 21 in baker's yeast, all attaching to a b5 domain. After unsuccessful attempts at crystallizing a human Ncb5or construct comprising the N-terminal region naturally fused to the b5 domain, we were able to obtain a high-resolution atomic structure of a recombinant rice RLF construct corresponding to residues 25-129 of human Ncb5or (52% sequence identity; 74% similarity). The structure reveals Trp120 (corresponding to invariant Trp37 in Ncb5or) to be part of an 11-residue α-helix (S116 QMDWLKLTRT126 ) packing against two of the four helices in the b5 domain that surround heme (α2 and α5). The Trp120 side chain forms a network of interactions with the side chains of four highly conserved residues corresponding to Tyr85 and Tyr88 (α2), Cys124 (α5), and Leu47 in Ncb5or. Circular dichroism measurements of human Ncb5or fragments further support a key role of Trp37 in nucleating the formation of the N-terminal helix, whose location in the N/b5 module suggests a role in regulating the function of this multi-domain redox enzyme. This study revealed for the first time an ancient origin of a helical motif in the N/b5 module as reflected by its existence in a class of cytochrome b5 proteins from three kingdoms among eukaryotes.


Assuntos
Citocromos b , NAD , Animais , Humanos , Citocromo-B(5) Redutase/química , Oxirredutases , Heme/química
6.
Arch Biochem Biophys ; 744: 109679, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37393983

RESUMO

Human liver pyruvate kinase (hlPYK) catalyzes the final step in glycolysis, the formation of pyruvate (PYR) and ATP from phosphoenolpyruvate (PEP) and ADP. Fructose 1,6-bisphosphate (FBP), a pathway intermediate of glycolysis, serves as an allosteric activator of hlPYK. Zymomonas mobilis pyruvate kinase (ZmPYK) performs the final step of the Entner-Doudoroff pathway, which is similar to glycolysis in that energy is harvested from glucose and pyruvate is generated. The Entner-Doudoroff pathway does not have FBP as a pathway intermediate, and ZmPYK is not allosterically activated. In this work, we solved the 2.4 Å X-ray crystallographic structure of ZmPYK. The protein is dimeric in solution as determined by gel filtration chromatography, but crystallizes as a tetramer. The buried surface area of the ZmPYK tetramerization interface is significantly smaller than that of hlPYK, and yet tetramerization using the standard interfaces from higher organisms provides an accessible low energy crystallization pathway. Interestingly, the ZmPYK structure showed a phosphate ion in the analogous location to the 6-phosphate binding site of FBP in hlPYK. Circular Dichroism (CD) was used to measure melting temperatures of hlPYK and ZmPYK in the absence and presence of substrates and effectors. The only significant difference was an additional phase of small amplitude for the ZmPYK melting curves. We conclude that the phosphate ion plays neither a structural or allosteric role in ZmPYK under the conditions tested. We hypothesize that ZmPYK does not have sufficient protein stability for activity to be tuned by allosteric effectors as described for rheostat positions in the allosteric homologues.


Assuntos
Piruvato Quinase , Zymomonas , Humanos , Piruvato Quinase/metabolismo , Zymomonas/metabolismo , Sítios de Ligação , Metabolismo dos Carboidratos , Piruvatos , Regulação Alostérica
7.
J Biol Chem ; 296: 100047, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33168628

RESUMO

Conventionally, most amino acid substitutions at "important" protein positions are expected to abolish function. However, in several soluble-globular proteins, we identified a class of nonconserved positions for which various substitutions produced progressive functional changes; we consider these evolutionary "rheostats". Here, we report a strong rheostat position in the integral membrane protein, Na+/taurocholate (TCA) cotransporting polypeptide, at the site of a pharmacologically relevant polymorphism (S267F). Functional studies were performed for all 20 substitutions (S267X) with three substrates (TCA, estrone-3-sulfate, and rosuvastatin). The S267X set showed strong rheostatic effects on overall transport, and individual substitutions showed varied effects on transport kinetics (Km and Vmax) and substrate specificity. To assess protein stability, we measured surface expression and used the Rosetta software (https://www.rosettacommons.org) suite to model structure and stability changes of S267X. Although buried near the substrate-binding site, S267X substitutions were easily accommodated in the Na+/TCA cotransporting polypeptide structure model. Across the modest range of changes, calculated stabilities correlated with surface-expression differences, but neither parameter correlated with altered transport. Thus, substitutions at rheostat position 267 had wide-ranging effects on the phenotype of this integral membrane protein. We further propose that polymorphic positions in other proteins might be locations of rheostat positions.


Assuntos
Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Polimorfismo Genético , Simportadores/genética , Substituição de Aminoácidos , Transporte Biológico , Estrona/análogos & derivados , Estrona/metabolismo , Células HEK293 , Humanos , Cinética , Transportadores de Ânions Orgânicos Dependentes de Sódio/química , Estabilidade Proteica , Rosuvastatina Cálcica/metabolismo , Simportadores/química , Ácido Taurocólico/metabolismo
8.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35328632

RESUMO

In the Na+/taurocholate cotransporting polypeptide (NTCP), the clinically relevant S267F polymorphism occurs at a "rheostat position". That is, amino acid substitutions at this position ("S267X") lead to a wide range of functional outcomes. This result was particularly striking because molecular models predicted the S267X side chains are buried, and thus, usually expected to be less tolerant of substitutions. To assess whether structural tolerance to buried substitutions is widespread in NTCP, here we used Rosetta to model all 19 potential substitutions at another 13 buried positions. Again, only subtle changes in the calculated stabilities and structures were predicted. Calculations were experimentally validated for 19 variants at codon 271 ("N271X"). Results showed near wildtype expression and rheostatic modulation of substrate transport, implicating N271 as a rheostat position. Notably, each N271X substitution showed a similar effect on the transport of three different substrates and thus did not alter substrate specificity. This differs from S267X, which altered both transport kinetics and specificity. As both transport and specificity may change during protein evolution, the recognition of such rheostat positions may be important for evolutionary studies. We further propose that the presence of rheostat positions is facilitated by local plasticity within the protein structure. Finally, we note that identifying rheostat positions may advance efforts to predict new biomedically relevant missense variants in NTCP and other membrane transport proteins.


Assuntos
Transportadores de Ânions Orgânicos Dependentes de Sódio , Simportadores , Substituição de Aminoácidos , Humanos , Proteínas de Membrana Transportadoras , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Peptídeos/metabolismo , Polimorfismo Genético , Simportadores/metabolismo , Ácido Taurocólico
9.
Biophys J ; 118(12): 2966-2978, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32479745

RESUMO

The allosteric coupling constant in K-type allosteric systems is defined as a ratio of the binding of substrate in the absence of effector to the binding of the substrate in the presence of a saturating concentration of effector. As a result, the coupling constant is itself an equilibrium value comprised of a ΔH and a TΔS component. In the scenario in which TΔS completely compensates ΔH, no allosteric influence of effector binding on substrate affinity is observed. However, in this "silent coupling" scenario, the presence of effector causes a change in the ΔH associated with substrate binding. A suggestion has now been made that "silent modulators" are ideal drug leads because they can be modified to act as either allosteric activators or inhibitors. Any attempt to rationally design the effector to be an allosteric activator or inhibitor is likely to be benefitted by knowledge of the mechanism that gives rise to coupling. Hydrogen/deuterium exchange with mass spectrometry detection has now been used to identify regions of proteins that experience conformational and/or dynamic changes in the allosteric regulation. Here, we demonstrate the expected temperature dependence of the allosteric regulation of rabbit muscle pyruvate kinase by Ala to demonstrate that this effector reduces substrate (phosphoenolpyruvate) affinity at 35°C and at 10°C but is silent at intermediate temperatures. We then explore the use of hydrogen/deuterium exchange with mass spectrometry to evaluate the areas of the protein that are modified in the mechanism that gives rise to the silent coupling between Ala and phosphoenolpyruvate. Many of the peptide regions of the protein identified as changing in this silent system (Ala as the effector) were included in changes previously identified for allosteric inhibition by Phe.


Assuntos
Peptídeos , Proteínas , Regulação Alostérica , Animais , Entropia , Coelhos , Termodinâmica
10.
Proteins ; 88(10): 1340-1350, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32449829

RESUMO

Understanding how each residue position contributes to protein function has been a long-standing goal in protein science. Substitution studies have historically focused on conserved protein positions. However, substitutions of nonconserved positions can also modify function. Indeed, we recently identified nonconserved positions that have large substitution effects in human liver pyruvate kinase (hLPYK), including altered allosteric coupling. To facilitate a comparison of which characteristics determine when a nonconserved position does vs does not contribute to function, the goal of the current work was to identify neutral positions in hLPYK. However, existing hLPYK data showed that three features commonly associated with neutral positions-high sequence entropy, high surface exposure, and alanine scanning-lacked the sensitivity needed to guide experimental studies. We used multiple evolutionary patterns identified in a sequence alignment of the PYK family to identify which positions were least patterned, reasoning that these were most likely to be neutral. Nine positions were tested with a total of 117 amino acid substitutions. Although exploring all potential functions is not feasible for any protein, five parameters associated with substrate/effector affinities and allosteric coupling were measured for hLPYK variants. For each position, the aggregate functional outcomes of all variants were used to quantify a "neutrality" score. Three positions showed perfect neutral scores for all five parameters. Furthermore, the nine positions showed larger neutral scores than 17 positions located near allosteric binding sites. Thus, our strategy successfully enriched the dataset for positions with neutral and modest substitutions.


Assuntos
Substituição de Aminoácidos , Fígado/química , Mutação , Piruvato Quinase/química , Regulação Alostérica , Sítio Alostérico , Sequência de Aminoácidos , Expressão Gênica , Humanos , Fígado/enzimologia , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Alinhamento de Sequência , Relação Estrutura-Atividade , Especificidade por Substrato
11.
Arch Biochem Biophys ; 695: 108633, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33075302

RESUMO

A linked-function theory for allostery allows for a differentiation between those protein-ligand interactions that contribute the most to ligand binding and those protein-ligand interactions that contribute to the allosteric mechanism. This potential distinction is the basis for analogue studies used to determine which chemical moieties on the allosteric effector contribute to allostery. Although less recognized, the same separation of functions is possible for substrate-enzyme interactions. When evaluating allosteric regulation in human liver pyruvate kinase, the use of a range of monovalent cations (K+, NH4+, Rb+, Cs+, cyclohexylammonium+ and Tris+) altered substrate (phosphoenolpyruvate; PEP) affinity, but maintained similar allosteric responses to the allosteric activator, fructose-1,6-bisphosphate (Fru-1,6-BP). Because crystal structures indicate that the active site monovalent cation interacts directly with the phosphate moiety of the bound PEP substrate, we questioned if the phosphate moiety might contribute to substrate binding, but not to the allosteric mechanism. Here, we demonstrate that the binding of oxalate, a non-phosphorylated substrate/product analogue, is allosterically enhanced by Fru-1,6-BP. That observation is consistent with the concept that the phosphate moiety of PEP is not required for the allosteric function, even though that moiety likely contributes to determining substrate affinity.


Assuntos
Frutosedifosfatos/química , Fígado/enzimologia , Fosfoenolpiruvato/química , Piruvato Quinase/química , Regulação Alostérica , Frutosedifosfatos/metabolismo , Humanos , Fosfoenolpiruvato/metabolismo , Piruvato Quinase/metabolismo
12.
Med Chem Res ; 29(7): 1133-1146, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32641900

RESUMO

To achieve the full potential of pharmacogenomics, one must accurately predict the functional out comes that arise from amino acid substitutions in proteins. Classically, researchers have focused on understanding the consequences of individual substitutions. However, literature surveys have shown that most substitutions were created at evolutionarily conserved positions. Awareness of this bias leads to a shift in perspective, from considering the outcomes of individual substitutions to understanding the roles of individual protein positions. Conserved positions tend to act as "toggle" switches, with most substitutions abolishing function. However, nonconserved positions have been found equally capable of affecting protein function. Indeed, many nonconserved positions act like functional dimmer switches ("rheostat" positions): This is revealed when multiple substitutions are made at a single position. Each substitution has a different functional outcome; the set of substitutions spans arange of outcomes. Finally, some nonconserved positions appear neutral, capable of accommodating all amino acid types without modifying function. This manuscript reviews the currently-known properties of rheost at positions, with examples shown for pyruvate kinase, organic anion transporting polypeptide 1B1, the beta-lactamase inhibitory protein, and angiotensin-converting enzyme 2. Outcomes observed for rheostat positions have implications for the rational design of drug analogs and allosteric drugs. Furthermore, this new framework - comprising three types of protein positions - provides a new approach to interpreting disease and population-based databases of amino acid changes. In conclusion, although a full understanding of substitution out comes at rheostat positions poses a challenge, utilization of this new frame of reference will further advance the application of pharmacogenomics.

13.
Biophys J ; 116(9): 1598-1608, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31010662

RESUMO

Although the critical role of allostery in controlling enzymatic processes is well appreciated, there is a current dearth in our understanding of its underlying mechanisms, including communication between binding sites. One potential key aspect of intersite communication is the mechanical coupling between residues in a protein. Here, we introduce a graph-based computational approach to investigate the mechanical coupling between distant parts of a protein, highlighting effective pathways via which protein motion can transfer energy between sites. In this method, each residue is treated as a node on a weighted, undirected graph, in which the edges are defined by locally correlated motions of those residues and weighted by the strength of the correlation. The method was validated against experimental data on allosteric regulation in the human liver pyruvate kinase as obtained from full-protein alanine-scanning mutagenesis (systematic mutation) studies, as well as computational data on two G-protein-coupled receptors. The method provides semiquantitative information on the regulatory importance of specific structural elements. It is shown that these elements are key for the mechanical coupling between distant parts of the protein by providing effective pathways for energy transfer. It is also shown that, although there are a multitude of energy transfer pathways between distant parts of a protein, these pathways share a few common nodes that represent effective "chokepoints" for the communication.


Assuntos
Fenômenos Mecânicos , Piruvato Quinase/química , Piruvato Quinase/metabolismo , Regulação Alostérica , Fenômenos Biomecânicos , Humanos , Fígado/enzimologia , Modelos Moleculares , Conformação Proteica
14.
Hum Mutat ; 39(12): 1814-1826, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30117637

RESUMO

Human mutations often cause amino acid changes (variants) that can alter protein function or stability. Some variants fall at protein positions that experimentally exhibit "rheostatic" mutation outcomes (different amino acid substitutions lead to a range of functional outcomes). In ongoing studies of rheostat positions, we encountered the need to aggregate experimental results from multiple variants, to describe the overall roles of individual positions. Here, we present "RheoScale" which generates quantitative scores to discriminate rheostat positions from those with "toggle" (most substitutions abolish function) or "neutral" (most substitutions have wild-type function) outcomes. RheoScale scores facilitate correlations of experimental data (such as binding affinity or stability) with structural and bioinformatic analyses. The RheoScale calculator is encoded into a Microsoft Excel workbook and an R script. Example analyses are shown for three model protein systems, including one assessed via deep mutational scanning. The RheoScale calculator quickly and efficiently provided quantitative descriptions that were in good agreement with prior qualitative observations. As an example application, scores were compared to the example proteins' structures; strong rheostat positions tended to occur in dynamic locations. In the future, RheoScale scores can be easily integrated into computational studies to facilitate improved algorithms for predicting outcomes of human variants.


Assuntos
Substituição de Aminoácidos , Biologia Computacional/métodos , Proteínas/química , Humanos , Modelos Moleculares , Conformação Proteica , Estabilidade Proteica , Proteínas/genética , Software
15.
Hum Mutat ; 38(9): 1132-1143, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28407397

RESUMO

Many studies of allosteric mechanisms use limited numbers of mutations to test whether residues play "key" roles. However, if a large percentage of the protein contributes to allosteric function, mutating any residue would have a high probability of modifying allostery. Thus, a predicted mechanism that is dependent on only a few residues could erroneously appear to be supported. We used whole-protein alanine-scanning mutagenesis to determine which amino acid sidechains of human liver pyruvate kinase (hL-PYK; approved symbol PKLR) contribute to regulation by fructose-1,6-bisphosphate (Fru-1,6-BP; activator) and alanine (inhibitor). Each nonalanine/nonglycine residue of hL-PYK was mutated to alanine to generate 431 mutant proteins. Allosteric functions in active proteins were quantified by following substrate affinity over a concentration range of effectors. Results show that different residues contribute to the two allosteric functions. Only a small fraction of mutated residues perturbed inhibition by alanine. In contrast, a large percentage of mutated residues influenced activation by Fru-1,6-BP; inhibition by alanine is not simply the reverse of activation by Fru-1,6-BP. Moreover, the results show that Fru-1,6-BP activation would be extremely difficult to elucidate using a limited number of mutations. Additionally, this large mutational data set will be useful to train and test computational algorithms aiming to predict allosteric mechanisms.


Assuntos
Alanina/farmacologia , Frutosedifosfatos/farmacologia , Mutação , Piruvato Quinase/química , Piruvato Quinase/genética , Algoritmos , Regulação Alostérica , Biologia Computacional , Cristalografia por Raios X , Ativação Enzimática , Humanos , Modelos Moleculares , Piruvato Quinase/metabolismo
16.
Hum Mutat ; 38(9): 1144-1154, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28459139

RESUMO

The outcome of structure-guided mutational analyses is often used in support of postulated mechanisms of protein allostery. However, the limits of how informative mutations can be in understanding allosteric mechanisms are not completely clear. Here, we report an exercise to evaluate whether mutational data can support a simplistic mechanistic model, developed with minimal data inputs. Due to the lack of a mechanism to explain how alanine allosterically modifies the affinity of human liver pyruvate kinase (approved symbol PKLR) for its substrate, phosphoenolpyruvate, we proposed a speculative allosteric mechanism for this system. Within the allosteric amino-acid-binding site (something in the effector site must, of necessity, contribute to the allosteric mechanism), we implemented multiple mutational strategies: (1) site-directed random mutagenesis at positions that contact bound alanine and (2) mutations to probe specific questions. Despite acknowledged inadequacies used to formulate the speculative mechanism, many mutations modified the allosteric coupling constant (Qax ) consistent with that mechanism. The observed support for this speculative mechanism leaves us to ponder the best use of mutational data in structure-function studies of allosteric mechanisms. The mutational databank derived from this exercise has an independent value for training and testing algorithms specific to allostery.


Assuntos
Alanina/metabolismo , Mutagênese Sítio-Dirigida/métodos , Piruvato Quinase/genética , Algoritmos , Regulação Alostérica , Sítio Alostérico , Domínio Catalítico , Humanos , Modelos Moleculares , Fosfoenolpiruvato , Conformação Proteica , Piruvato Quinase/metabolismo
17.
Hum Mutat ; 38(9): 1123-1131, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28370845

RESUMO

The Critical Assessment of Genome Interpretation (CAGI) is a global community experiment to objectively assess computational methods for predicting phenotypic impacts of genomic variation. One of the 2015-2016 competitions focused on predicting the influence of mutations on the allosteric regulation of human liver pyruvate kinase. More than 30 different researchers accessed the challenge data. However, only four groups accepted the challenge. Features used for predictions ranged from evolutionary constraints, mutant site locations relative to active and effector binding sites, and computational docking outputs. Despite the range of expertise and strategies used by predictors, the best predictions were marginally greater than random for modified allostery resulting from mutations. In contrast, several groups successfully predicted which mutations severely reduced enzymatic activity. Nonetheless, poor predictions of allostery stands in stark contrast to the impression left by more than 700 PubMed entries identified using the identifiers "computational + allosteric." This contrast highlights a specialized need for new computational tools and utilization of benchmarks that focus on allosteric regulation.


Assuntos
Benchmarking/métodos , Piruvato Quinase/química , Piruvato Quinase/genética , Regulação Alostérica , Sítio Alostérico , Biologia Computacional/métodos , Bases de Dados Genéticas , Frutosedifosfatos/metabolismo , Humanos , Modelos Moleculares , Mutação , Piruvato Quinase/metabolismo
18.
Biophys J ; 110(9): 1912-23, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27166800

RESUMO

Allosteric regulation of protein function is recognized to be widespread throughout biology; however, knowledge of allosteric mechanisms, the molecular changes within a protein that couple one binding site to another, is limited. Although mutagenesis is often used to probe allosteric mechanisms, we consider herein what the outcome of a mutagenesis study truly reveals about an allosteric mechanism. Arguably, the best way to evaluate the effects of a mutation on allostery is to monitor the allosteric coupling constant (Qax), a ratio of the substrate binding constants in the absence versus presence of an allosteric effector. A range of substitutions at a given residue position in a protein can reveal when a particular substitution causes gain-of-function, which addresses a key challenge in interpreting mutation-dependent changes in the magnitude of Qax. Thus, whole-protein mutagenesis studies offer an acceptable means of identifying residues that contribute to an allosteric mechanism. With this focus on monitoring Qax, and keeping in mind the equilibrium nature of allostery, we consider alternative possibilities for what an allosteric mechanism might be. We conclude that different possible mechanisms (rotation-of-solid-domains, movement of secondary structure, side-chain repacking, changes in dynamics, etc.) will result in different findings in whole-protein mutagenesis studies.


Assuntos
Mutagênese , Proteínas/química , Proteínas/genética , Regulação Alostérica , Modelos Moleculares , Mutação , Conformação Proteica , Proteínas/metabolismo , Termodinâmica
19.
Adv Exp Med Biol ; 919: 397-431, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27975228

RESUMO

Modern mass spectrometry (MS) technologies have provided a versatile platform that can be combined with a large number of techniques to analyze protein structure and dynamics. These techniques include the three detailed in this chapter: (1) hydrogen/deuterium exchange (HDX), (2) limited proteolysis, and (3) chemical crosslinking (CX). HDX relies on the change in mass of a protein upon its dilution into deuterated buffer, which results in varied deuterium content within its backbone amides. Structural information on surface exposed, flexible or disordered linker regions of proteins can be achieved through limited proteolysis, using a variety of proteases and only small extents of digestion. CX refers to the covalent coupling of distinct chemical species and has been used to analyze the structure, function and interactions of proteins by identifying crosslinking sites that are formed by small multi-functional reagents, termed crosslinkers. Each of these MS applications is capable of revealing structural information for proteins when used either with or without other typical high resolution techniques, including NMR and X-ray crystallography.


Assuntos
Biologia Computacional/métodos , Mineração de Dados/métodos , Bases de Dados de Proteínas , Espectrometria de Massas/métodos , Proteínas/análise , Proteoma , Proteômica/métodos , Algoritmos , Animais , Reagentes de Ligações Cruzadas/química , Medição da Troca de Deutério , Ensaios de Triagem em Larga Escala , Humanos , Conformação Proteica , Proteólise , Reprodutibilidade dos Testes , Software , Fluxo de Trabalho
20.
Biochemistry ; 54(7): 1516-24, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25629396

RESUMO

In the study of allosteric proteins, understanding which effector-protein interactions contribute to allosteric activation is important both for designing allosteric drugs and for understanding allosteric mechanisms. The antihyperglycemic target, human liver pyruvate kinase (hL-PYK), binds its allosteric activator, fructose 1,6-bisphosphate (Fru-1,6-BP), such that the 1'-phosphate interacts with side chains of Arg501 and Trp494 and the 6'-phosphate interacts with Thr444, Thr446, Ser449 (i.e., the 444-449 loop), and Ser531. Additionally, backbone atoms from the 527-533 loop interact with a sugar ring hydroxyl and the two effector phosphate moieties. An effector analogue series indicates that only one phosphate on the sugar is required for activation. However, singly phosphorylated sugars, including Fru-1-P and Fru-6-P, bind with a Kix in the range of 0.07-1 mM. The second phosphate of Fru-1,6-BP causes tight effector binding, because this native effector has a Kix of 0.061 µM. Glucose 1,6-bisphosphate and ribulose 1,5-bisphosphate bind in the 0.07-1 mM range. The contrast with a higher Fru-1,6-BP binding indicates specificity for the fructose sugar conformation. Site-directed random mutagenesis at each residue that contacts bound Fru-1,6-BP showed that a negative charge introduced at position 531 mimics allosteric activation, even in the absence of Fru-1,6-BP. Collectively, analogue and mutagenesis studies are consistent with the 527-533 loop playing a key role in allosteric function. Deletion mutations that shortened the 527-533 loop were expected to prevent formation of hydrogen bonds between backbone atoms on the loop and Fru-1,6-BP. Indeed, Fru-1,6-BP did not activate these loop-shortened mutant proteins. Previous structural comparisons of M1-PYK and M2-PYK indicate that the 527-533 loop makes interactions across a subunit interface when an activator is not present. Mutating the hL-PYK subunit interface interactions among Trp527, Arg528, and Asp499 mimics allosteric activation. Considered with published structures, these results are consistent with (1) the two phosphates of Fru-1,6-BP docking to Arg501/Trp494 and the 444-449 loop, respectively, and (2) the formation of hydrogen bonds among Fru-1,6-BP and backbone atoms of the 527-533 loop pulling this loop away from the subunit interface, which results in breaking of the Trp527-Arg528-Asp499 interactions to elicit an allosteric response.


Assuntos
Frutosedifosfatos/metabolismo , Fígado/enzimologia , Piruvato Quinase/química , Piruvato Quinase/metabolismo , Regulação Alostérica , Sítios de Ligação , Frutosedifosfatos/química , Humanos , Modelos Moleculares , Mutagênese , Mutação , Piruvato Quinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA