Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Toxicol Appl Pharmacol ; 482: 116772, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036230

RESUMO

The tobacco cembranoid known as (1S,2E,4R,6R,7E,11E)-2,7,11-cembratriene-4,6-diol (4R) has been shown to offer neuroprotection against conditions such as brain ischemia, systemic inflammation, Parkinson's disease, and organophosphate toxicity in rodents. Previous safety studies conducted on male and female Sprague Dawley rats revealed no significant side effects following a single injection of 4R at varying concentrations (6, 24, or 98 mg/kg of body weight). This study aimed to assess the potential of 4R for clinical trials in neurotherapy in male nonhuman primates. Ten macaques (Macacca mulatta) were randomly separated into two groups of 5 and then intravenously injected with 4R or vehicle for 11 consecutive days at a dose of 1.4 mg/kg. Throughout the study, we monitored brain activity by electroencephalogram, somatosensory evoked potentials, and transcranial motor evoked potentials on days 0, 4, 8, and 12 and found no significant changes. The spontaneous behavior of the primates remained unaffected by the treatment. Minor hematological and blood composition variations were also detected in the experimental animals but lacked clinical significance. In conclusion, our results reinforce the notion that 4R is non-toxic in nonhuman primates under the conditions of this study.


Assuntos
Isquemia Encefálica , Diterpenos , Ratos , Masculino , Feminino , Animais , Ratos Sprague-Dawley , Nicotiana
2.
J Neuroinflammation ; 18(1): 95, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33874954

RESUMO

BACKGROUND: Chronic brain inflammation has been implicated in the pathogenesis of various neurodegenerative diseases and disorders. For example, overexpression of pro-inflammatory cytokines has been associated with impairments in hippocampal-dependent memory. Lipopolysaccharide (LPS) injection is a widely used model to explore the pathobiology of inflammation. LPS injection into mice causes systemic inflammation, neuronal damage, and poor memory outcomes if the inflammation is not controlled. Activation of the alpha-7 nicotinic receptor (α7) plays an anti-inflammatory role in the brain through vagal efferent nerve signaling. 4R-cembranoid (4R) is a natural compound that crosses the blood-brain barrier, induces neuronal survival, and has been shown to modulate the activity of nicotinic receptors. The purpose of this study is to determine whether 4R reduces the deleterious effects of LPS-induced neuroinflammation and whether the α7 receptor plays a role in mediating these beneficial effects. METHODS: Ex vivo population spike recordings were performed in C57BL/6J wild-type (WT) and alpha-7-knockout (α7KO) mouse hippocampal slices in the presence of 4R and nicotinic receptor inhibitors. For in vivo studies, WT and α7KO mice were injected with LPS for 2 h, followed by 4R or vehicle for 22 h. Analyses of IL-1ß, TNF-α, STAT3, CREB, Akt1, and the long-term novel object recognition test (NORT) were performed for both genotypes. In addition, RNA sequencing and RT-qPCR analyses were carried out for 12 mRNAs related to neuroinflammation and their modification by 4R. RESULTS: 4R confers neuroprotection after NMDA-induced neurotoxicity in both WT and α7KO mice. Moreover, hippocampal TNF-α and IL-1ß levels were decreased with 4R treatment following LPS exposure in both strains of mice. 4R restored LPS-induced cognitive decline in NORT. There was a significant increase in the phosphorylation of STAT3, CREB, and Akt1 with 4R treatment in the WT mouse hippocampus following LPS exposure. In α7KO mice, only pAkt levels were significantly elevated in the cortex. 4R significantly upregulated mRNA levels of ORM2, GDNF, and C3 following LPS exposure. These proteins are known to play a role in modulating microglial activation, neuronal survival, and memory. CONCLUSION: Our results indicate that 4R decreases the levels of pro-inflammatory cytokines; improves memory function; activates STAT3, Akt1, and CREB phosphorylation; and upregulates the mRNA levels of ORM2, GDNF, and C3. These effects are independent of the α7 nicotinic receptor.


Assuntos
Diterpenos/farmacologia , Encefalite/prevenção & controle , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Lipopolissacarídeos , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Anti-Inflamatórios , Citocinas/imunologia , Encefalite/fisiopatologia , Hipocampo/imunologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
4.
Neuropharmacology ; : 110199, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39447735

RESUMO

Gulf War Illness (GWI) has been consistently linked to exposure to pyridostigmine (PB), N,N-Diethyl-meta-toluamide (DEET), permethrin (PER), and traces of sarin. In this study, diisopropylfluorophosphate (DFP, sarin surrogate) and the GWI-related chemicals were found to reduce the number of functionally active neurons in rat hippocampal slices. These findings confirm a link between GWI neurotoxicants and N-Methyl-D-Aspartate (NMDA)-mediated excitotoxicity, which was successfully reversed by Edelfosine (a phospholipase Cß (PLCß3) inhibitor) and Flupirtine (a KCNQ/M (Kv7) channel agonist). To test whether 4R-cembranoid (4R), a nicotinic α7 acetylcholinesterase receptor (α7AChR) modulator known for its neuroprotective properties, can restore hippocampal neurons from glutamate-induced neurotoxicity, we exposed rat hippocampal slices with DFP for 10 min followed by 60 min treatment with 4R. We investigated the 4R mechanisms of neuroprotection after preincubation with LY294002, PD98059, and KN-62. The inhibition of the phosphatidylinositol 3-kinase (PI3K), mitogen-activated protein kinase kinase (MEK1/2), and calcium/calmodulin-dependent protein kinase (CaMKII) abrogated the protective effect of 4R against DFP-induced neurotoxicity. In separate experiments, after incubation with DFP, followed by 4R for 1 hr., cellular extracts were prepared for Western blotting of phospho-Akt, phospho-GSK3ß, phosphorylated extracellular signal-regulated kinase (ERK)1/2, CaMKII and cAMP response element-binding protein (CREB). Our results show that DFP induces neuronal dysfunction by dephosphorylation, while 4R restores the phosphorylation of Akt, GSK3, ERK1/2, CREB, and CaMKII. Moreover, our proteomics analysis supported the notion that 4R activates additional signaling pathways related to enhancing neuronal signaling, synaptic plasticity, and apoptotic inhibition to promote cell survival against DFP, offering biomarkers for developing treatment against GWI.

5.
Bioorg Med Chem ; 21(15): 4678-86, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23769165

RESUMO

Diisopropylfluorophosphate (DFP) is an organophosphorous insecticide used as a surrogate for the more toxic chemical warfare nerve agent sarin. DFP produces neurotoxicity in vivo and irreversibly decreases the area of population spikes recorded from the CA1 region of acute hippocampal slices. (1S,2E,4R,6R,7E,11E)-2,7,11-Cembratriene-4,6-diol (1) is a neuroprotective natural cembranoid that reverses DFP-induced damage both in vivo and in the hippocampal slice. Cembranoid 1 acts by noncompetitive inhibition of the α7 nicotinic acetylcholine receptor. This study aims at establishing a preliminary structure-activity relationship to define the neuroprotective cembranoid pharmacophores using the hippocampal slice assay and pharmacophore modeling. Fourteen natural, semisynthetic, or biocatalytic cembranoid analogues 2-15 related to 1 were tested for their capacity to protect the population spikes from DFP-induced damage and intrinsic toxicity. Twelve cembranoids caused significant reversal of DFP toxicity; only 3 active analogues displayed minor intrinsic toxicity at 10 µM. The C-4 epimer of 1 (2) and the 4-O-methyl ether analogue of 1 (3), were totally devoid of neuroprotective activity. The results suggested a model for cembranoid binding where the hydrophobic ring surface binds to a hydrophobic (Hbic) patch on the receptor molecule and an electronegative atom (oxygen or sulfur) in proper spatial relationship to the ring surface interacts with an electropositive group in the receptor binding site. A pharmacophore model consisting of 1 hydrogen bond acceptor (HBA), 2 Hbic, and 10 exclusion spheres was established using HipHop-REFINE and supported the above mentioned pharmacophoric hypothesis.


Assuntos
Diterpenos/química , Diterpenos/farmacologia , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/prevenção & controle , Animais , Diterpenos/síntese química , Feminino , Hipocampo/efeitos dos fármacos , Modelos Moleculares , Fármacos Neuroprotetores/química , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
6.
Neurochem Res ; 40(10): 2007-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26526302
7.
Neuroscience ; 291: 250-259, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25677097

RESUMO

(1S,2E,4R,6R,-7E,11E)-2,7,11-cembratriene-4,6-diol (4R) is a precursor to key flavor ingredients in leaves of Nicotiana species. The present study shows 4R decreased brain damage in rodent ischemic stroke models. The 4R-pretreated mice had lower infarct volumes (26.2±9.7 mm3) than those in control groups (untreated: 63.4±4.2 mm3, DMSO: 60.2±14.2 mm3). The 4R-posttreated rats also had less infarct volumes (120±65 mm3) than those in the rats of the DMSO group (291±95 mm3). The results from in vitro experiments indicate that 4R decreased neuro2a cell (neuroblastoma cells) apoptosis induced by oxygen-glucose deprivation (OGD), and improved the population spikes' (PSs) recovery in rat acute hippocampal slices under OGD; a phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin, abolished the effect of 4R on PSs recovery. Furthermore, 4R also inhibited monocyte adhesion to murine brain-derived endothelial (bEND5) cells and upregulation of intercellular adhesion molecule-1(ICAM-1) induced by OGD/reoxygenation (OGD/R), and restored the p-Akt level to pre-OGD/R values in bEND5 cells. In conclusion, the present study indicates that 4R has a protective effect in rodent ischemic stroke models. Inhibition of ICAM-1 expression and restoration of Akt phosphorylation are the possible mechanisms involved in cellular protection by 4R.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Diterpenos/farmacologia , Fármacos Neuroprotetores/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Encéfalo/patologia , Encéfalo/fisiopatologia , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Glucose/deficiência , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia
8.
PLoS One ; 7(2): e30755, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22348022

RESUMO

BACKGROUND: Kinins, with bradykinin and des-Arg(9)-bradykinin being the most important ones, are pro-inflammatory peptides released after tissue injury including stroke. Although the actions of bradykinin are in general well characterized; it remains controversial whether the effects of bradykinin are beneficial or not. Kinin-B2 receptor activation participates in various physiological processes including hypotension, neurotransmission and neuronal differentiation. The bradykinin metabolite des-Arg(9)-bradykinin as well as Lys-des-Arg(9)-bradykinin activates the kinin-B1 receptor known to be expressed under inflammatory conditions. We have investigated the effects of kinin-B1 and B2 receptor activation on N-methyl-D-aspartate (NMDA)-induced excitotoxicity measured as decreased capacity to produce synaptically evoked population spikes in the CA1 area of rat hippocampal slices. PRINCIPAL FINDINGS: Bradykinin at 10 nM and 1 µM concentrations triggered a neuroprotective cascade via kinin-B2 receptor activation which conferred protection against NMDA-induced excitotoxicity. Recovery of population spikes induced by 10 nM bradykinin was completely abolished when the peptide was co-applied with the selective kinin-B2 receptor antagonist HOE-140. Kinin-B2 receptor activation promoted survival of hippocampal neurons via phosphatidylinositol 3-kinase, while MEK/MAPK signaling was not involved in protection against NMDA-evoked excitotoxic effects. However, 100 nM Lys-des-Arg(9)-bradykinin, a potent kinin-B1 receptor agonist, reversed bradykinin-induced population spike recovery. The inhibition of population spikes recovery was reversed by PD98059, showing that MEK/MAPK was involved in the induction of apoptosis mediated by the B1 receptor. CONCLUSIONS: Bradykinin exerted protection against NMDA-induced excitotoxicity which is reversed in the presence of a kinin-B1 receptor agonist. As bradykinin is converted to the kinin-B1 receptor metabolite des-Arg(9)-bradykinin by carboxypeptidases, present in different areas including in brain, our results provide a mechanism for the neuroprotective effect in vitro despite of the deleterious effect observed in vivo.


Assuntos
Bradicinina/toxicidade , N-Metilaspartato , Receptor B1 da Bradicinina/agonistas , Receptor B2 da Bradicinina/fisiologia , Animais , Bradicinina/administração & dosagem , Bradicinina/análogos & derivados , Química Encefálica , Região CA1 Hipocampal , Carboxipeptidases/metabolismo , Fármacos Neuroprotetores , Ratos , Receptor B1 da Bradicinina/fisiologia
9.
Comp Med ; 62(5): 427-38, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23114047

RESUMO

The goal of this study was to characterize acute neuronal injury in a novel nonhuman primate (NHP) ischemic stroke model by using multiple outcome measures. Silk sutures were inserted into the M1 segment of the middle cerebral artery of rhesus macaques to achieve permanent occlusion of the vessel. The sutures were introduced via the femoral artery by using endovascular microcatheterization techniques. Within hours after middle cerebral artery occlusion (MCAO), infarction was detectable by using diffusion-weighted MRI imaging. The infarcts expanded by 24 h after MCAO and then were detectable on T2-weighted images. The infarcts seen by MRI were consistent with neuronal injury demonstrated histologically. Neurobehavioral function after MCAO was determined by using 2 neurologic testing scales. Neurologic assessments indicated that impairment after ischemia was limited to motor function in the contralateral arm; other neurologic and behavioral parameters were largely unaffected. We also used microarrays to examine gene expression profiles in peripheral blood mononuclear cells after MCAO-induced ischemia. Several genes were altered in a time-dependent manner after MCAO, suggesting that this ischemia model may be suitable for identifying blood biomarkers associated with the presence and severity of ischemia. This NHP stroke model likely will facilitate the elucidation of mechanisms associated with acute neuronal injury after ischemia. In addition, the ability to identify candidate blood biomarkers in NHP after ischemia may prompt the development of new strategies for the diagnosis and treatment of ischemic stroke in humans.


Assuntos
Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/sangue , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Transtornos Psicomotores/patologia , Acidente Vascular Cerebral/patologia , Animais , Western Blotting , Cateterismo , Citocinas/metabolismo , Técnicas de Diagnóstico Neurológico , Ensaio de Imunoadsorção Enzimática , Perfilação da Expressão Gênica , Técnicas Histológicas , Leucócitos Mononucleares/metabolismo , Macaca mulatta , Imageamento por Ressonância Magnética , Análise em Microsséries , Neurônios/patologia , Transtornos Psicomotores/etiologia , Acidente Vascular Cerebral/sangue
10.
Neurochem Res ; 32(2): 363-76, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17191130

RESUMO

Glutamate and its receptors are expressed very early during development and may play important roles in neurogenesis, synapse formation and brain wiring. The levels of glutamate and activity of its receptors can be influenced by exogenous factors, leading to neurodevelopmental disorders. To investigate the role of NMDA receptors on gene regulation in a neuronal model, we used primary neuronal cultures developed from embryonic rat cerebri in serum-free medium. Using Affymetrix Gene Arrays, we found that genes known to be involved in neuronal plasticity were differentially expressed 24 h after a brief activation of NMDA receptors. The upregulation of these genes was accompanied by a sustained induction of CREB phosphorylation, and an increase in synaptophysin immunoreactivity. We conclude that NMDA receptor activation elicits expression of genes whose downstream products are involved in the regulation of early phases of the process leading to synaptogenesis and its consolidation, at least in part through sustained CREB phosphorylation.


Assuntos
Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Córtex Cerebral/citologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Ratos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Sinaptofisina/biossíntese
11.
J Neurochem ; 97 Suppl 1: 35-43, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16635248

RESUMO

Neurotransmitters and their receptors have been involved in both proper brain development and neurodevelopmental disorders. The role that nicotinic receptors play in immature cortical neurons was initially investigated by gene profiling using Affymetrix DNA arrays. Both short (15 min) and prolonged (18 h) treatments with nicotine did not induce modification in gene expression, whereas a significant down-regulation of c-fos protein levels was observed after 18 h treatment. Conversely, a brief treatment with the glutamatergic agonist NMDA triggered up-regulation of immediate early genes and transcription factors, which remained unaffected by pre-treatment for 18 h with nicotine. Calcium imaging studies revealed that NMDA activated a sustained increase in intracellular calcium concentration in the majority of neurons, whereas nicotine evoked only a transient calcium increase in a smaller percentage of neurons, suggesting that the calcium signalling response was correlated with activation of gene expression. Nicotine effects on immature cortical neurons perhaps do not require gene regulation but may be still acting on signalling pathways.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Neurônios/metabolismo , Neurotransmissores/farmacologia , Animais , Cálcio/análise , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Embrião de Mamíferos , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Nicotina/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-fos/análise , Ratos , Receptores Colinérgicos/efeitos dos fármacos , Receptores Colinérgicos/fisiologia , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA